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Abstract—Stress, a significant risk factor for chronic disease,
manifests as changes in heart rate, respiration rate, and blood
pressure. Non-invasive wearables like smartwatches can con-
tinuously track these physiological indicators to predict stress,
enabling clinicians to develop and test interventions. However,
most current devices are rigid and lack skin conformity, resulting
in suboptimal signal quality and adherence during extended
use. Furthermore, existing flexible sensors employ either elec-
trocardiogram (ECG) or photoplethysmography (PPG), but not
both, which is useful for calculating pulse arrival time (PAT) –
known to correlate with stress. Addressing these challenges, we
introduce HealthSense, a novel, flexible, and skin-conformable
device that integrates ECG, PPG, and Inertial Measurement Unit
(IMU) sensors into a single wearable. We assessed the comfort
of wearing HealthSense and the feasibility of stress prediction
by conducting a stress-induction study with 11 participants.
Participants rated the comfort level of wearing the device
on a Likert scale of 1-5, with 80% rating it as a 5 (most
comfortable). Using statistical features, heart rate variability
(HRV) related features, and PAT from our sensor data, we trained
machine learning (ML) models to predict minute-level perceived
and physiological stress with F1-scores of 85.5% and 87.7%,
respectively. Additionally, using SHAP values, we identified PAT,
systolic time, and pulse as the most significant contributors to
the predictions. These findings enhance the understanding of
physiological manifestations of stress and lays the groundwork
for future stress-reduction interventions.

I. INTRODUCTION

Over 60% of adults globally are afflicted by stress due
to health, financial, and societal factors, presenting a perva-
sive public health challenge warranting clinical intervention
[1]. Stress can lead to severe physiological consequences,
including elevated blood pressure, atherosclerosis, myocardial
infarction, and hypertension. Stress adversely affects the en-
docrine, immune, and reproductive systems and is linked to
premature birth and developmental disorders in children [2].
Prior research suggests that women are more affected by stress
than men, experiencing higher psychological distress and
greater susceptibility to psychiatric illness [3]. Additionally,
stress is associated with depression and unhealthy behaviors
such as overeating, smoking, and substance abuse. To prevent
the downstream effects of stress, identifying biomarkers of
prolonged stress is crucial for developing effective tools and
interventions.

Traditional stress monitoring techniques, such as self-
reports, cortisol measurements, and blood pressure response,
face significant limitations in accuracy, convenience, and

practicality for continuous monitoring. Self-reporting involves
tracking stress levels through logging or smartphone apps,
which can be burdensome, easily missed and is not objective
(i.e., capturing physiological manifestations of stress known
to impact health). Cortisol measurement from saliva samples
provides more objective measures but requires lab visits for
accurate assessment, and poorly correlates with stress. Blood
pressure and stress are correlated, but blood pressure mea-
surements, while accurate, follow strict protocols and can
even induce stress during the collection process (white coat
syndrome). Although traditional stress monitoring techniques
are accurate for short-term assessments, their limitations make
them unsuitable for long-term, continuous monitoring of stress
biomarkers, highlighting the need for more objective and
practical solutions.

Researchers are developing continuous monitoring methods
that leverage the ubiquity of wireless and mobile sensors
for low-cost, unobtrusive solutions that do not interfere with
daily activities. One example is Glabella, a wearable device in
the form of glasses that estimates blood pressure using PPG
sensors at multiple head locations [4]. The authors utilized
PPG data to measure pulse transit time (the time a pulse
wave takes to travel between two arterial sites), which is
shown to correlate with blood pressure and, by extension,
stress. While Glabella provides a novel sensor in an eye-glass
form factor, it is constrained by inconsistent sensor contact
and has not been shown to estimate stress. In this paper, we
focus on extracting PAT (time interval between ECG R-peak
and PPG peak), which, according to recent studies [5], is a
better correlate to blood pressure and, hence, a more robust
proxy to stress. Recent studies [6] demonstrate the potential of
chest-worn devices combining ECG, PPG, and accelerometers
for continuous, cuffless blood pressure estimation, crucial for
continuous stress monitoring over extended periods. However,
these devices are rigid and not skin-conformable. In contrast,
King et al. [7] found that the flexible and hidden wearables,
such as the Biostamp RC, was favored over wrist-worn devices
for comfort. However, since it only uses ECG sensors, calcu-
lating PAT remains a challenge, which can improve our ability
to predict and estimate objective physiological stressors.

To address the challenges of poor skin conformity, discom-
fort during extended use due to device rigidity, and the need
for simultaneous ECG and PPG measurements for calculating
PAT, we detail the following contributions in this paper:
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Fig. 1. Schematic and visual representations of the HealthSense wearable sensor and its adhesive layers. (A) Top surface of the HealthSense device, showing
the biosensor patch, adhesive layer, and liner. (B) Bottom surface with electrodes and optical sensors. (C) Exploded view of the HealthSense patch, highlighting
four polymeric and electronic layers. (D) Exploded view of the disposable adhesive, showing five material layers for a soft, breathable interface. (E) HealthSense
patch images: top view (top left), side view (bottom left), under bend (top right), and twist (bottom right) deformations. The HealthSense patch integrates
ECG/PPG sensors for single-device PAT and stress measurements.

1) HealthSense: A novel, flexible, skin-conformable device
integrating ECG, PPG, and IMU sensors for continuous,
unobtrusive monitoring with a three-day battery life.

2) Stress-Induction User Study: A study with 11 partici-
pants demonstrating high comfort levels for continuous
wear, with 80% rating it 5 on a Likert scale out of 5.

3) Stress Detection Models: Our ML models extracted
features from ECG, PPG, and PAT data to predict per-
ceived and physiological stress, achieving best weighted
F1-scores of 85.5% and 87.7%, respectively. We also
identified and explained critical features that contributed
to the predictions.

II. METHOD

A. Device and Sensing Modality

Fig. 2. Person wearing
HealthSense device

We designed the HealthSense
(Fig. 1) device as a compact, wear-
able patch offering 24-hour skin-
friendly adhesion for easy applica-
tion and secure wear (Fig. 2). The
rechargeable battery supports up
to three days of continuous sens-
ing with all sensors active, mak-
ing it ideal for prolonged stress
measurement. The device features
a 3-axis accelerometer and a gy-
roscope to capture six degrees of
freedom in inertial sensing. It also
includes two pairs of electrodes

for ECG sensing and PPG sensors that utilize red or green
visible light. The device is capable of collecting raw data at a
max sampling rate of 400 Hz.

B. User Study

Building on prior research [7], we conducted our study
using the HealthSense device with 11 female participants ages
24 to 64 (M = 38.36, SD = 16.00). Physiological stress was
defined as the state during induced stress activities, while

perceived stress was measured through participants’ responses
to micro-EMA questions on a Likert scale after each in-lab
activity. Stress was induced by having participants perform
a series of activities listed in Table I. On conclusion of
each activity, participants completed the micro-EMA for the
activity.

TABLE I
STRESS INDUCTION ACTIVITIES

Activity Description
Rest 10 min: Relaxation period
PASAT 10 min: 4 rounds of 60 trials at 4000ms, 2400ms,

2000ms, 1600ms, 1200ms.
Rest 5 min: Relaxation period
Video Game 5 min: 2-Player Mortal Kombat Game
Conversation 5 min: Unstructured conversation with researcher
Rest 5 min: Relaxation period
Crying Baby 3:30 min: Listening to a 45-sec recording of infant

crying with two 1-min rest periods
Rest 10 min: Relaxation period
Cold Pressor ≈ 1 min: Inserting dominant hand in an ice bucket

for as long as the participant can.

For the first activity, we utilized a well-established psy-
chological stressor, the Paced Auditory Serial Addition Test
(PASAT), using Inquisit’s Software Tool. This non-verbal
computer-based test presented participants with an audible
sequence of single-digit numbers (1-9) at a constant speed,
requiring them to mentally sum up the last two digits. Partic-
ipants then selected the current sum from a circle of numbers
(1-18) on a computer screen by clicking the appropriate
number. The other stressful activities included a two-player
Mortal Kombat video game, a crying infant audio, and the cold
pressor test, where participants immersed their hands in ice
water. The duration of the cold pressor varied by participant,
as each was instructed to leave their hand in ice water for as
long as possible, up to one minute. We randomized the order
of all stressful activities to counterbalance potential cross-over
effects, and no single stressor was dominant. The activities
alternated between stressful and non-stressful activities. Non-
stressful activities included conversing with the researcher or
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an activity-free relaxation period. Since participants respond
differently to various stressful situations, we administered a
micro-EMA after each activity, allowing participants to self-
report their stress levels.

C. Wearability Questionnaire

At the end of the lab session, we asked each participant to
complete a device wearability survey to assess the comfort and
feasibility of the device in a real-world setting. Participants
completed a short survey to answer the following questions
about the HealthSense device:

1) How comfortable was the device? (On a scale from 1 -
5, 5 being the most comfortable)

2) During the activity, were you aware of the device?
3) Would you consider wearing the device all day?
4) Would you consider wearing the device while sleeping?
5) If paid $100, would you be willing to wear the sensor

for 30 days?

III. DATA PREPROCESSING

In this section, we build upon the data preprocessing by
King et al. [7] and present our preprocessing steps applied to
the raw ECG and PPG signals. We used the Python HeartPy
library for signal preprocessing. First, raw ECG data were
segmented into 1-minute sliding windows with 50% overlap.
For each 1-minute segment, a band-pass filter between 0.67
Hz and 124 Hz isolated the QRS complexes for R-peaks
detection, followed by min-max normalization. For each 1-
minute segment, we split the signal into 0.6-second intervals.
We then used an autoencoder-based noise detection model
to filter nosiy ECG segments. Within each 1-minute sliding
window, we classified the 0.6-second segmented intervals as
clean or noisy. We extracted R-peaks only from sequences that
contained a minimum of three consecutive clean 0.6-second
intervals. For the PPG signal, we applied the same 1-minute
segmentation approach as used for the ECG signal. We applied
a Notch filter with a cutoff frequency of 0.05 Hz to remove
baseline wander, followed by a bandpass Butterworth filter
to process signals between 0.67 Hz and 124 Hz. Based on
the noise model results for identifying noisy ECG signals, we
removed the corresponding noisy timepoints from the PPG
signal as well.

A. Feature Extraction from ECG

After applying the preprocessing steps mentioned above on
the raw ECG signal, we extracted minute-level ECG features
based on the clean ECG intervals. To identify valid R-R Inter-
Beat Intervals (IBIs), we used a two-moving average algorithm
to extract peaks from clean ECG intervals. The detected IBIs
were passed into a Criterion Beat Difference function [8] to
filter invalid R-peaks. 15% of the final IBIs were randomly
selected for manual inspection to ensure quality. Both minute-
level heart-rate variability (HRV) and statistical features were
extracted using valid IBIs.

B. Feature Extraction from PPG

We implemented feature point detection, which involved
detecting the wave crest, trough point, inflection point, and
extreme point in clean 1-minute PPG segments. We extracted
the Cardiac Period (CP), the Systolic Upstroke Time (ST), and
the Diastolic Time (DT). Referencing the R peaks detected in
the ECG segment, we calculated PAT as the time delay be-
tween the ECG R peak and the PPG fiducial point (maximum
value of the first derivative of the PPG waveform). For each
PAT caluclated, we set the normal range of 300 to 340 and
exluded values outside of this range. We calculated the min,
max, mean, median, range, and standard deviation for each
valid minute-level PAT value.

IV. STRESS DETECTION MODELS

We trained and evaluated four supervised machine learning
(ML) models—random forest, decision tree, adaptive boosting,
and gradient boosting machines—on data from 11 participants
to predict perceived and physiological stress. The features
extracted from ECG and PPG were used as input to predict
perceived and physiological stress. We used the Python sci-kit-
learn library to train and evaluate the ML models. To evaluate
the stress prediction models, we used stratified 5-fold cross-
validation. To avoid redundancy and high feature correlations,
we stratified the data within each fold by participant (non-
overlapped) into 80% for the training set and 20% for the val-
idation set. We then applied correlation-based feature selection
(CFS) to the training set’s 34 features (2 PPG-based, 31 ECG-
based, and 1 combined). We trained and validated the ML
models after identifying the best features and optimized the
hyperparameters using Bayesian search over three iterations in
the training set. For each fold, we reported the precision, recall,
and weighted F1 score on the hold-out set using the model
trained with the optimized parameters. To further understand
the impact of each feature extracted from different sensing
modalities on physiological stress, we applied SHAP on the
best-performed model, analyzing the 9 most common features
selected by CFS from the entire set of 34 features.

V. RESULTS

A. Wearability

Yes No Maybe Yes No Maybe Yes No Maybe

Consider wearing
the device all day?

If paid $100, willing
to wear for 30 days?

How comfortable
was the device?

Wearing the device
while sleeping?

5Likert: 4

n=9

n=2

n=7

n=3

n=1 n=7

n=2

n=2
n=8

n=1

n=2

Fig. 3. Wearability survey resuls

All participants rated the device as comfortable (≥ 4 on
Likert scale), with 81.82% indicating they would consider
wearing the device while sleeping, and 90.91% open to
wearing it all day 3. When incentivized with a $100 reward,
81.82% of participants were willing to wear the device for
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30 days, suggesting a high level of overall acceptability and
feasibility for long-term use.

B. Model Performance

Our dataset comprised a total of 1,005 minutes of activities.
The autoencoder noise model identified 389 minutes as noisy,
leaving 616 minutes of clean data. Of these, 200 minutes were
stress-induced activities, while 416 minutes were from non-
stressful rest sessions. The gradient boost machine (GBM)
outperformed other models, achieving 85.5% F1 for perceived
stress and 87.7% F1 for physiological stress (Table II).

TABLE II
STRESS PREDICTION RESULTS BY 5-FOLD CROSS-VALIDATION

Model Perceived Stress Physiological Stress
Precision Recall F-1 Precision Recall F-1

GBM 0.855 0.859 0.855 0.840 0.738 0.877
DT 0.809 0.806 0.805 0.756 0.727 0.836
ADA 0.683 0.747 0.695 0.814 0.649 0.822
RDF 0.804 0.797 0.766 0.800 0.500 0.783

GBM: Gradient Boost Machine, DT: Decision Tree, ADA: Adaptive Boosting,
RDF: Random Forest. All F1 scores are weighted.

C. Feature Importance

We further analyzed the feature importance for predictions
of physiological stress, which is most germane to the health
outcomes of concern. During correlation-based feature subset
selection (CFS), the following common features were identi-
fied for each fold: pulse, mean, kurtosis, 80th percentile, 40th
percentile, RMS, count from minute-level ECG signal, systolic
time from the PPG signal, and average pulse arrival time (PAT)
from both signals combined.

The SHAP summary plot (Fig. 4), revealed that PAT (aver-
age), systolic time, and pulse were the most influential features
in predicting physiological stress. Systolic time demonstrated
an inverse relationship with physiological stress, with shorter
intervals indicating higher stress levels. Conversely, pulse rate
was positively associated with physiological stress, with higher
rates reflecting increased stress levels.

As observed in the SHAP figure, average PAT emerged as
the most important feature. However, the SHAP values for
average PAT are spread across both positive and negative
ranges. This distribution suggests that PAT has a complex
relationship with stress prediction, depending on its specific
value and interactions with other features. We believe this
complexity arises from the interactions between the selected
features. Further research is necessary to fully understand the
independent impact of each feature.

VI. CONCLUSION AND FUTURE WORK

Our study demonstrates the potential of HealthSense, a
novel flexible, skin-conformable wearable integrating ECG,
PPG, and IMU sensors, in predicting stress with high accuracy.
The device was rated highly comfortable by participants, and
our ML models achieved notable performance in predicting
both perceived and physiological stress. Future work will focus
on expanding the sample size, improving model accuracy, and

Fig. 4. SHAP summary plot for feature importance in detecting physiological
stress.

integrating real-time feedback mechanisms to provide per-
sonalized stress management interventions. Further research
will also explore the long-term usability and effectiveness of
HealthSense in diverse populations and real-world settings.
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[3] I. Sandanger, J. Nygård, T. Sørensen, and T. Moum, “Is women’s mental
health more susceptible than men’s to the influence of surrounding
stress?” Social Psychiatry and Psychiatric Epidemiology, vol. 39, pp.
177–184, 2004.

[4] C. Holz and E. J. Wang, “Glabella: Continuously Sensing Blood Pressure
Behavior using an Unobtrusive Wearable Device,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 1, no. 3, pp. 58:1–58:23, Sep. 2017.

[5] M. Di Rienzo, A. Avolio, G. Rizzo, Z. M. I. Zeybek, and L. Cucugliato,
“Multi-site pulse transit times, beat-to-beat blood pressure, and isovo-
lumic contraction time at rest and under stressors,” IEEE Journal of
Biomedical and Health Informatics, vol. 26, no. 2, pp. 561–571, 2021.

[6] J. Park, S. Yang, J. Sohn, J. Lee, S. Lee, Y. Ku, and H. C. Kim, “Cuffless
and continuous blood pressure monitoring using a single chest-worn
device,” IEEE Access, vol. 7, pp. 135 231–135 246, 2019.

[7] Z. D. King, J. Moskowitz, B. Egilmez, S. Zhang, L. Zhang, M. Bass,
J. Rogers, R. Ghaffari, L. Wakschlag, and N. Alshurafa, “micro-stress
ema: A passive sensing framework for detecting in-the-wild stress in
pregnant mothers,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 3, no. 3, pp. 1–22, 2019.

[8] K. Hovsepian, M. Al’Absi, E. Ertin, T. Kamarck, M. Nakajima, and
S. Kumar, “cstress: towards a gold standard for continuous stress as-
sessment in the mobile environment,” in Proceedings of the 2015 ACM
international joint conference on pervasive and ubiquitous computing,
2015, pp. 493–504.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on December 23,2024 at 07:22:17 UTC from IEEE Xplore.  Restrictions apply. 


