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A Multi-Platform Study of Crowd Signals Associated with
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The growing popularity of online fundraising (aka “crowdfunding”) has attracted significant research on the
subject. In contrast to previous studies that attempt to predict the success of crowdfunded projects based on
specific characteristics of the projects and their creators, we present a more general approach that focuses
on crowd dynamics and is robust to the particularities of different crowdfunding platforms. We rely on a
multi-method analysis to investigate the correlates, predictive importance, and quasi-causal effects of features
that describe crowd dynamics in determining the success of crowdfunded projects. By applying a multi-
method analysis to a study of fundraising in three different online markets, we uncover universal crowd
dynamics that ultimately decide which projects will succeed. In all analyses and across three markets, we
consistently find that funders’ behavioural signals (1) are significantly correlated with fundraising success; (2)
approximate fundraising outcomes better than the characteristics of projects and their creators such as credit
grade, company valuation, and subject domain; and (3) have significant quasi-causal effects on fundraising
outcomes while controlling for potentially confounding project variables. By showing that universal features
deduced from crowd behaviour are predictive of fundraising success on different crowdfunding platforms, our
work provides design-relevant insights about novel types of collective decision-making online. This research
inspires thus potential ways to leverage cues from the crowd and catalyses research into crowd-aware system
design.
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1 INTRODUCTION
Increasingly, people recognise crowdfunding as an enabler of a variety of online fundraising
activities that range from pro-social campaigns and supporting creative works to sizeable equity
investments [1, 5, 9, 33, 55, 65, 69]. This growing phenomenon is effective in reducing barriers in
access to capital by eliminating the effects of geographic distance between project creators and
funders [3] and reducing the transaction costs of making such fundraising possible. Crowdfunding
is also praised for promoting entrepreneurship by providing new opportunities to access funding [9,
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14] andmeans to improve the livelihoods of people living in emerging economies [6, 14]. In the wake
of the recent novel Coronavirus pandemic, online fundraising has received heightened attention
from many civic and international organisations that harnessed the power of crowdfunding to
support their efforts due to a lack of traditional fundraising. For instance, the World Health
Organisation (WHO) launched its first-ever crowdfunding campaign1 and several other eminent
GoFundMe campaigns supported some of the most impacted countries, such as Italy2.
The growing popularity of online fundraising has attracted significant research on the subject.

Most studies have tried to identify factors associated with successful fundraising, focusing on a
single platform (e.g. [3, 16, 34]), despite huge market variations both geographically and in the
type of the fundraising effort. Existing research, therefore, often does not automatically generalise
to other platforms and has resulted in conflicting findings concerning which project and creator
determinants are associated with success. Furthermore, most prior studies have attempted to predict
success based on various attributes of the projects [5, 52, 54], interactions with the crowd [67], the
creators [21], and their networks [4, 29, 39, 49, 63].

However, ad-hoc design and policy changes on crowdfunding platforms can confound all these
factors [17]. Hence, the social computing community needs controlled approaches to systematically
investigate the effects of project attributes and crowd behaviour on fundraising success. We thus
present a general approach that is robust to the particularities of different crowdfunding platforms
and markets and focuses on the crowd that contribute capital. This idea is backed up by evidence
for the importance of successfully attracting funders early in the campaign [22, 28] and the role of
subsequent herding in reaching the target amount [64, 69]. The broad spectrum of projects and
creators, the quick pace of funding, and untrained crowds using comparatively sparse data when
selecting worthy projects are factors that substantially complicate decision-making in crowdfund-
ing’s low information and high-risk situations. In this context, most funders rely on collective cues
when deciding to contribute to a project. Due to the significant signalling among crowd members,
when and how much capital people provide becomes a crucial descriptor of the decision-making
dynamics. Accordingly, previous work has found (on individual platforms) that simple features
describing crowd dynamics can be significant markers of fundraising success [2, 15, 16]. We build
on this observation by systematically investigating the dynamics of crowd behaviour across widely
different crowdfunding platforms and markets through a multi-method analysis that relies on three
different empirical methods to demonstrate the robustness of the crowd features. Our three main
contributions are:
(1) We investigate similarities and differences between a charity platform that collects donations

for public schools3, a dominant crowdfunding site that connects borrowers with lenders4, and
a leading equity crowdfunding platform that offers investors the opportunity to buy shares in
start-ups5. This is a unique multi-platform and cross-market study on crowdfunding success.

(2) We systematically test a set of intuitive and universal features that describe the behaviour
of funders (crowd features). We show the value of these features in determining fundraising
success within and across the studied platforms that span different markets, geographies,
and fundraising efforts.

(3) To substantiate our analysis, we develop a framework that uses an innovative combination of
methods for evaluating correlations between features and their importance. Our framework

1COVID-19 Solidarity Response Fund for WHO: https://covid19responsefund.org/en/
2A record-breaking crowdfunding campaign is helping Italy fight Covid-19: https://qz.com/1836221/record-breaking-
gofundme-campaigns-are-helping-italy-fight-covid-19/
3www.donorschoose.org
4www.prosper.com
5We are unable to disclose the name of the platform due to our Non-Disclosure Agreement (NDA) with them.
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encompasses a human-interpretable machine learning model and matching samples along
multiple dimensions to provide a causal understanding of the effect of crowd features.

Our paper proceeds by first computing a set of crowd features that describe collective behaviour
in a variety of settings that involve decision-making online. We first investigate correlation-based
associations between individual crowd features and fundraising success. In combination with
characteristics of projects that are visible to funders on each platform (project features), we then
perform supervised classification to predict fundraising outcomes and compare the predictive
performance of crowd features to that of project features. Our results show that crowd features are
significantly correlated with and better at approximating fundraising success across different online
crowdfunding platforms than project features. However, since project features have been shown in
prior research to determine fundraising success [5, 21, 27, 52, 67] and are observable to funders
on the crowdfunding platforms, we rely on a quasi-experimental matching analysis to isolate and
comparatively assess the effects of crowd features on fundraising success while controlling for the
potential confounding influence of the observable project features. In particular, we use Coarsened
Exact Matching (CEM) [41] to examine the causal effects of crowd features in relation to their
specific crowdfunding platform settings and show that the crowd effects are robust to platform
heterogeneity.

By demonstrating that universal features deduced from the behaviour of the contributing crowd
are correlated with and predictive of fundraising success, even when controlling for project features
observable by the crowd, our study provides empirical evidence of crowd dynamics features
that are important in the funding success of projects across different platforms and robust to
the particularities of the different online markets and platforms. Our work thus contributes not
only to crowdfunding, crowdsourcing, and social computing literature but also to the growing
body of knowledge on the science of success. We provide empirical insights on the emergence
of crowd dynamics that eventually determine success in computer-supported cooperative work
where collective cues underpin decision-making, thereby informing research-based, crowd-aware
platform design.

2 RELATEDWORK: DYNAMICS OF CROWDFUNDING
Crowdfunding means raising money for a venture, cause, project, or organisation by drawing
on relatively small contributions from a large group of individuals through a common online
platform and without standard financial intermediaries [55]. Online crowdfunding emerged in the
early 2000s through platforms such as DonorsChoose (2000), ArtistShare (2001), Prosper (2005),
IndieGoGo (2007), and Kickstarter (2009). Since then, these platforms have attracted significant
research attention in social computing and beyond (e.g. [1, 5, 7, 9, 25, 31, 54, 55, 61]). Selecting from
this vast literature, in this section, we discuss the current understanding on why project creators
choose to crowdfund and what motivates diverse crowds to contribute towards crowdfunding
projects. We further review the literature on known indicators of project success. We first focus on
specific characteristics associated with successful fundraising and then detail findings that might
generalise across different platforms.

For project creators, crowdfunding provides new opportunities to receive capital [31] especially
for demographics with limited access to resources from traditional lending institutions [6]. In
the wake of the 2008 financial crisis, for example, crowdfunding became a viable solution for
early-stage companies struggling to obtain funding through conventional financing [14]. Project
creators may also engage in crowdfunding for (1) establishing long-term interactions with funders
that extend beyond the financial transaction and (2) receiving public validation for their projects
and fundraising abilities [31]. Existing studies further show that crowdfunding platforms also
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range in terms of the motivations and goals of funders. For example, some funders are attracted
to these platforms as a means of demonstrating their personal support to creators’ projects [31],
in expectation of some kind of reward [9, 31], seeking to support an important cause with no
expectations of reward [31], or making a political statement6. Stark differences in motivations both
for project creators and funders have given rise to various marketplaces and different crowdfunding
models (e.g. lending, charity, equity, and reward-based crowdfunding). This heterogeneity in the
nature of the fundraising effort raises the question:Which findings from individual platforms hold
for crowdfunding in general?
Despite the increasing public interest in crowdfunding, not all projects succeed. In fact, most

projects fail to reach their fundraising goal by significant amounts and, typically, it is only by
small margins that successful projects meet their goal [34, 55]. Identifying factors that lead to
successful fundraising and predicting the probability of each project’s success therefore remains
one of the most important challenges in crowdfunding research. Several studies have linked
fundraising success to the nature of the projects. For instance, across platforms like Kickstarter
and Invesdor Oy (reward and equity platforms, respectively), the type of project matters because
people tend to support efforts that reflect their cultural values or further causes they care deeply
about [51, 55]. As we would expect, the fundraising goal correlates with fundraising success
as indicated by research on the reward-based platforms Kickstarter, Indiegogo, Ulule, Eppela,
and Demohour. Specifically, projects that request large amounts of money are more likely to
fail than modest requests [23, 24, 55, 71]. Additionally, the framing of the request has also been
linked to project success on the lending platform Prosper, on Kickstarter, and on the two charity
platforms DonorsChoose and GoFundMe [46, 54, 58]. Furthermore, according to research based
on Kickstarter, Prosper, and AngelList (an equity platform) the visibility of the project helps with
attracting funders. In particular, social media posts [28, 49, 70], the size of the creators’ social
network [20, 35, 39, 40, 55, 71], and their reputation [21] increase chances of fundraising success.
These studies indicate that various characteristics of projects, especially some that are specific to
the platform, have an impact on potential funders’ decision-making.

There is a general consensus in crowdfunding literature that identifiable signals of quality play
a key role in attracting contributions to projects. However, different platforms have different
ways to signal project quality. For instance, project quality is often derived from descriptions that
might include financial information, e.g. income statements may signal transparency, credibility,
and feasibility [30, 51]. Additionally, media content on the fundraising page has also been linked
with perceived project quality, mainly on Kickstarter. Particularly, a well-prepared concise video
can quickly capture the attention of the audience [54, 55], activity in terms of project updates
might indicate productivity [47, 67], and funders’ comments can suggest engagement and increase
accountability among project creators [47]. Most importantly, research also supports that collective
cues play a crucial role in funders’ evaluation of individual projects. On the one hand, there
is evidence for strong marketplace influences on funders’ behaviour: other projects available
on crowdfunding websites can draw money away [66], while the structure and design of the
platform also affects crowd engagement [17]. On the other hand, in line with findings about the
importance of information cascades and herding in successful fundraising [64, 69], most funders
interpret the amount [45] and arrival time [2, 22, 28, 61] of the first contributions as indicators
of project quality. This crucial signalling among crowd members has triggered investigations
into identifying descriptors of crowd dynamics that are associated with high-quality projects and
successful crowdfunding [2, 15, 16, 25]. Yet, it remains unclear how important these crowd features

6For instance via www.crowdpac.com
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are as determinants of success on different crowdfunding platforms after taking into account both
general and platform-dependent project features.

Existing research points to the need for a study that is based on multiple crowdfunding platforms
as this might clarify contradictions in the literature about the importance of specific aspects either
related to qualities of the project or the crowd dynamics among funders. For instance, a few
studies have found a negative correlation between the duration of crowdfunding campaigns and
their success [24, 51, 55]. While these studies suggest that longer fundraising campaigns may
convey a message of indecisiveness and inability to deliver, Cordova et al. [23] found that longer
campaigns may also increase the likelihood of project success as the contributions will eventually
add up to or even exceed the requested amount. Another example is the inconclusive finding
about the role of activity on social media networks in fundraising success. Specifically, while some
evidence suggests that project creators’ social media posts are related to campaign success on
Kickstarter [28, 49, 70], research on Indiegogo, for instance, suggests otherwise [24]. Further work
on Kickstarter observes that, although linked to the amount of early contributions, social media
connections don’t matter [22]. Possible explanations for the conflicting nature of evidence from
these studies are that (1) they are based on different crowdfunding platforms and/or (2) different
research methods were applied in each study. By conducting the same analysis on data from
multiple crowdfunding platforms, we hope to resolve some of the contradictions in the literature
and provide a robust assessment of the universality of crowd features.

3 DATA: CROWDFUNDING PLATFORMS & MARKETS
We obtained data from three crowdfunding platforms that represent different markets both in terms
of geography (US and UK) and the market model, i.e. lending, equity, and charity crowdfunding7.
These different platforms capture the heterogeneity in funders’ motivations and goals which vary
by the context and nature of the funding effort in each market model. For example, lenders and
investors may be motivated by financial rewards [4, 18, 26, 50], whereas donors on charity platforms
may be motivated by reputation, self-image, or empathy-related rewards [19, 32]. Additionally,
the crowdfunding platforms differ in terms of their uses (e.g. paying for financial, entrepreneurial,
or social ventures) and impacts (e.g. democratisation of financial services or greater availability
of funding for pro-social projects) [33]. Across the different crowdfunding platforms, we further
observe significant variation in the information that is visible to funders, for example, project
details that inform potential contributors about the attributes of the project (e.g. auto loan, request
for classroom book supplies, or business expense) as well as the characteristics of the project
creators (e.g. their gender or income). Most notably, the data from the different platforms come
from very different time periods (see Table 1). The temporal component is further compounded
by the fact that, at any considered time, different crowdfunding platforms and markets will be
experiencing different levels of adoption and maturity. Considering the time differences across
the platforms, a potential reliability of crowd dynamics features in consistently predicting project
success would be unexpected and extremely interesting. Rather than provide a comparison between
the different platforms, in this section, we introduce the three crowdfunding market models through
representative platform data sets and describe important project variables that are available for
prospective funders. In addition to identifying the project variables that are observable by funders
on each platform, we further compute a set of variables deduced from the behaviour of the funding
crowd and show in Section 5 that features pertaining to crowd dynamics are significantly correlated

7Several studies have looked at reward-based crowdfunding, such as Kickstarter. Our analysis excludes the reward model
due to the lack of fine-grained data about crowd dynamics on such platforms.
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with and predictive of fundraising success even after we control for the potential confounding
influences of the observable project variables.

Lending Model. The Peer-to-Peer (P2P) lending model allows borrowers to receive varying
amounts of commercial interest-based unsecured loans from crowd members [16, 29, 35, 39, 46].
The contributed funds are offered as a loan to be paid within a given time-frame and at a specified
interest rate. We obtained crowd lending data from Prosper, the oldest P2P lending marketplace in
the US. The lending data comprise 53,768 lenders who have collectivelymade 2,877,407 contributions
towards 143,549 loans. The P2P platform attracts borrowers and lenders from all walks of life seeking
non-collateral loans or small investments outside traditional financial institutions. For each project,
the data describe characteristics of the loan, such as the requested amount, interest rate on loan,
and monthly payment. Included in the project information are attributes of the borrower, such
as their Prosper score i.e. a custom risk score built using historical Prosper.com data and allows
the platform to maintain consistency when evaluating individual loan requests. There is also
information about the credit grade (i.e. the loan’s estimated loss rate range), debt-to-income ratio,
and whether the borrower is a homeowner or not. These project features are shown to lenders on
the platform to signal each borrower’s creditworthiness. Additionally, these features are commonly
used by traditional financial institutions to make expert lending decisions based on borrowers’
creditworthiness.

Equity Model. In equity crowdfunding, funders are investors entitled to shares of future profits
in an entrepreneurial venture. Equity crowdfunding expanded rapidly after the 2008 financial crisis,
but has grown slowly compared to peer-to-peer lending due to high levels of government regulation
on securities as well as potential risks for fraud and the need for investor protection [14, 51, 63–65].
We obtained equity crowdfunding data from one of the leading platforms in the UK and EU. The
data comprise 21,907 investors who have collectively made 77,419 investments into 740 campaigns.
On this platform, project creators include start-ups and early-stage companies seeking capital. Since
projects are large capital campaigns, funders comprise both small and large institutional investors as
well as wealthy individual investors. For each project, the data describe the requested amount, equity
percentage offered in return of investment, and the company’s valuation prior to the investment.
The data also describe the number of entrepreneurs, whether the entrepreneurs have passed the
finance quiz to make sure that investors understand the risks of investing in startups and other
growth-focused businesses, and whether the equity investment requires investor self–certification,
a process that requires investors to report their income and net worth as well as the amount of
their other crowdfunding investments to reveal individual investor limits. Additionally, the project
data describe whether the equity campaign is compliant with the UK’s Enterprise Investment
Scheme (EIS) and Seed Enterprise Investment Scheme (SEIS) which are tax incentive schemes for
UK taxpayers who invest in qualifying early-stage businesses that are permanently established
within the UK.

Charity Model. Some online fundraising efforts follow a charity model whereby funders serve
as philanthropists who expect no material or financial return for their donations [5, 45, 61, 66].
We obtained charity crowdfunding data from DonorsChoose, one of the earliest crowdfunding
platforms that allows individuals to make donations towards public school classroom projects. The
charity data comprise 850,498 donors who have made 1,004,658 donations to 215,825 public school
projects from pre-K to grade 12. The projects are posted by teachers from different parts of the US
and from communities in rural, urban, and suburban areas. They span several subject areas from
math and science to literacy and language. For each project, the data describe the requested amount,
teacher’s gender, students’ grade level, community type, subject area, and the type of resource that the
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donations are intended for (e.g. books, technology equipment, art supplies, or school trips). Similar
to the other platforms we study, these project details are visible to donors (i.e. funders) on the site.
The notable differences between these crowdfunding markets and platforms are reflected in

the different project features listed above. From the different project features observable on each
platform, funders then decide what projects to support based on their expectations of each project’s
success deduced from the project variables that they believe to be associated with success. However,
these project variables do not capture the role of funders’ contribution patterns towards project
success [64, 69]. In the next section, we therefore describe the crowd features that characterise
funders’ behaviour across all of these platforms and provide details about our methods for (1)
investigating the relationship between the crowd features and fundraising success, (2) predicting
fundraising success and comparing the relative importance of project and crowd features in the
predictive task, and (3) estimating the quasi-causal effects of the crowd features on fundraising
success.

4 PREDICTING SUCCESSFUL FUNDRAISING
On all three platforms, we only considered projects that were either fully funded, or failed to
meet their funding goal. We excluded active projects, DonorsChoose projects that received funds
re-allocated from failed projects as these projects did not reflect true funder activity, as well as
Prosper projects that had no credit information8. Table 1 provides a high level summary of the data.

Table 1. Summary of our data collected from three different crowdfunding platforms. As shown, data were
collected across multiple years, but at different times for the three platforms. The crowdfunding platforms
also differ in terms of the number of projects, contributors, and contributions (i.e. loans, investments, and
donations made to various projects). Bottom part summarises computed crowd features (mean, std) for each
platform.

Variable Lending Equity Charity
Period 2005 - 2008 2013 - 2015 2002 - 2016
Projects 143,549 740 215,825
Contributors 53,768 21,907 850,498
Contributions 2,877,407 77,419 1,004,658
Appeal 19.041 (40.318) 104.620 (175.694) 4.655 (4.906)
Momentum 1.100 (0.876) 1.080 (0.505) 1.023 (0.595)
Variation 0.384 (0.513) 2.416 (1.854) 0.516 (0.495)
Latency 0.458 (0.419) 0.289 (0.324) 0.616 (0.236)
Engagement 7.029 (2.221) 52.449 (38.681) 33.557 (44.384)

4.1 Crowd Determinants of Fundraising Success
In addition to the project features identified above, we computed general crowd features that
characterise the collective dynamics of fundraising that ultimately decide what is worthy of
success. In contrast with old theories claiming that genius and personal performance are behind
outstanding achievements in science, technology, business, and the arts [12, 42, 53, 60, 62], there is
increasing evidence for the collective nature of success [8, 36]. Within this new line of research,
there is indication that the crowd-based valuation process is to a great extent random [59] and that
arbitrary initial advantages are inflated by positive feedback. We believe this collective aspect can
8The platform stopped showing borrowers’ credit grade to funders in 2009 and hence we focus on projects posted before
that time. Throughout our analyses, credit grade is an important variable of creditworthiness because this is the most
common indicator of financial health used by lenders in traditional financial settings.
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help us navigate the increasing number and diversity of indicators conceivable and available via
Web-based platforms to approximate fundraising success via the broad appeal, crowd engagement,
as well as the variation and temporal patterns in fundraising activity. We therefore compute the
following five crowd features based on arguments from prior literature:

• Intuitively, the more funders a project attracts, the more likely that it will meet its funding
goal. Hence, we count the number of unique funders of each project and consider that to be
the project’s appeal. We expect appeal to correlate with success as it has been shown to in
previous studies [9, 31].

• Temporal aspects of funders’ activity, such as the arrival times of individual contributions
might also signal confidence in the project’s merit [16]. Accordingly, our next feature focuses
on the speed at which funds are accumulating, as a reflection of how fast funders make
their determination to contribute. We measure the momentum of contributions through the
coefficient of variation for the times between consecutive contributions i.e. the ratio between
the mean and standard deviation of these time intervals.

• Along a similar argument, we also measure the variation in contribution amounts using a
coefficient of variation. The main idea here is that the amount of others’ contributions visible
to funders can influence also the behaviour of the crowd [15]. This feature signals potential
herding mechanisms that have been found to influence contribution dynamics on lending
platforms [16].

• Further, prior work has also found that early contributions to crowdfunding may signal the
crowd’s interest in a project thereby attracting other funders to contribute as well [61]. To
measure this temporal aspect, we compute each project’s latency as the difference between
the time of the first contribution and the time that the project was posted.

• Finally, for each project, we compute a crowd engagement feature as the time between the
first and last contribution when the project reached either its fundraising deadline or goal.
While in some cases this measure may correlate with project duration, it captures only the
time frame in which funders were actively contributing to a given project.

For all projects on the three crowdfunding platforms, we computed these five features. Summary
statistics per platform are shown in Table 1.

4.2 Methods
In this section, we introduce the methods that make up our multi-method analysis. We used
Pearson’s correlation to investigate the relationship between crowd features and crowdfunding
success. We then combined crowd features with project features provided by each platform to train
and evaluate the performance of Random Forest classifiers in predicting fundraising success [13].
Essentially, these were binary classifications aiming to differentiate between funded and failed
projects based on available features. Since the range of values for each feature vary wildly, we
use min-max normalisation to scale the features to a fixed range from 0 to 1. The result of this
pre-processing technique is that each feature contributes approximately equally to the learning
process and hence the model’s sensitivity decreases due to the relative scales of features. We also
tried other classification methods such as Logistic Regression, Naive Bayes, and Adaptive Boosting.
The results with these alternative methods were qualitatively indistinguishable from the ones
obtained with Random Forest, which are also interpretable and allow for a better understanding
of feature importance, which becomes crucial when comparing the relative importance of crowd
features to that of project features. Since crowd lending and charity platforms have a large class
imbalance (20.2% and 99.4% funded projects, respectively), we under-sampled the majority class and
performed the classification task on balanced data on all platforms. In all experimental setups, we
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perform 𝑘-fold cross validation with hold-out samples. Specifically, for each platform, we randomly
divide the data into 𝑘 = 5 subsets. Each time, one of the 𝑘 subsets is used as the test set (hold-out
samples) and the other 𝑘 − 1 subsets are combined to form a training set. Then we compute the
average accuracy, precision, recall, F1-Score, and area under the receiver operating characteristic
curve (AUC) across all 𝑘 trials. We further evaluated the importance of individual and grouped
(project vs crowd) features in predicting fundraising success using the Random Forest permutation
importance (piRF) score which is measured as the relative increase in the model’s prediction error
after permuting the individual or grouped features’ value. We rely on Scikit-Learn’s Python API
for the Random Forest implementation [57].
While Random Forest permutation importance scores provide a systematic ranking of crowd

and project features based on how predictive they are of fundraising success, they cannot help
understand why crowdfunded projects with similar covariates sometimes end up with dissimilar
outcomes or identify differences in crowd behaviour that may explain such seemingly arbitrary
outcomes. To investigate this question, we rely on Coarsened Exact Matching (CEM) which is a
widely-used method for deriving causal inferences from observational data where the treatment
variable is not randomly assigned [41]. Specifically, CEM provides a quasi-experimental approach
for assessing the effects of crowd dynamics features on fundraising success while controlling for
the confounding influence of project features that are associated with funding success. Common
in the social sciences, this method has been used effectively to investigate the effect of race in
online dating [48], the impact of temperature and precipitation variability on the risk of violence
in sub-Saharan Africa [56], and the influence of women’s inner social circles on their leadership
success [68].
The CEM approach begins by identifying and grouping projects with similar platform-specific

features observable by funders, but with varying crowd features. Lending crowdfunding projects
were matched based on the requested amount, monthly loan payment, interest rate, Prosper score,
credit grade, debt-to-income ratio, and homeownership. Equity projects were matched according to
the requested amount, equity percentage offered, pre-money valuation, number of entrepreneurs,
investor self-certification and quiz status, and EIS and SEIS compliance. Charity projects were
matched based on the requested amount, resource type, teacher’s gender, students’ grade level,
subject area, and community type. We then rely on CEM’s automated algorithm for “coarsening”
these project features to discrete values or “bins” and matching projects with exact “bin signatures”
thereby generating groups of similar projects.
We categorised projects into treatment and control groups based on whether they were suc-

cessfully funded or not, then estimated the effect of each crowd feature on fundraising out-
come (i.e. fully funded or not), while controlling for project features. We do so using the tra-
ditional CEM measure of Sample Average Treatment Effect on the Treated (SATT) measure:
𝑆𝐴𝑇𝑇 = 1

𝑛 (𝑇 )
∑
𝑖∈𝑇

{(𝑌𝑖 |𝑇𝑖 = 1) − (𝑌𝑖 |𝑇𝑖 = 0)} where 𝑌𝑖 is the outcome variable (funded (𝑌𝑖 = 1) or not

(𝑌𝑖 = 0)), 𝑇 is the set of crowd treatments (𝑇1=Appeal, 𝑇2=Momentum, 𝑇3=Variation, 𝑇4=latency,
𝑇5=Engagement), and 𝑛(𝑇 ) is the number of crowd treatment effects, i.e, five. We thus compute
the sample average treatment effect of each crowd feature on fundraising success as the difference
between two possible outcomes. For each project, the fundraising outcome under crowd treatment
condition (𝑌𝑖 |𝑇𝑖 = 1) is always observed. However, the counterfactual condition (𝑌𝑖 |𝑇𝑖 = 0), i.e.
the fundraising outcome if no treatment condition, e.g. if no crowd appeal, momentum, variation
etc., is always unobserved and imputed via simulation using a logit model. Once the unobserved
outcomes are imputed, the estimate of each crowd feature’s sample average treatment effect is
measured by simply averaging the differences over all observations and imputed outcomes for the
counterfactuals (𝑌𝑖 |𝑇𝑖 = 1) − (𝑌𝑖 |𝑇𝑖 = 0). The SATT therefore follows the Rubin causal model (RCM),
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an approach to the statistical analysis of cause and effect based on the framework of potential
outcomes [38]. Based on the RCM, the causal effect of each crowd feature is therefore the difference
in fundraising outcome between the observed and counterfactual condition.

To allow for comparisons with other matching methods that retain all treated projects and select
an equal number of control projects to include in the matched data set based on a distance or
similarity measure, e.g. nearest neighbour matching (NNM), we further pruned the CEM solution
using the Euclidean distance within each matched sample to achieve similar one-to-one matching
solutions with CEM as one would obtain with NNM. In this case, the advantage of CEM over other
matching methods is that for each project in the treatment group (funded = 1) we have exactly
one “twin-project” in the control group (funded = 0) that has the exact same coarsened project
features as the project in the treatment condition. Any projects in the treatment group that have no
“twin-project” are thus discarded. This additional filtering procedure ensures that we are making
counterfactual inferences only from valid points of comparison [43, 44]. To assess the goodness of
the matching solutions, we used the 𝐿1 statistic (1: perfect imbalance, 0: perfect balance) which is a
measure of global imbalance with respect to the joint distribution of the project covariates. The 𝐿1
statistic is not valuable on its own, but serves rather as a point of comparison between matching
solutions, thus 𝐿1 works for imbalance as 𝑅2 works for model fit: the absolute values mean less
than comparisons between matching solutions [11]. In comparison to nearest neighbour matching,
CEM produced better matching solutions and hence provides a more reliable approach for deriving
causal inferences from the observational data used in this study.

5 RESULTS
We observe similar crowd behaviour across the different crowdfunding platforms, despite differences
in the number of projects posted per unit time, individual contribution amounts towards each
project, and project funding success rate on each platform. The kernel density estimates of the
crowd features on all three platforms share similar distribution properties indicating similarities in
crowd activity in terms of individuals’ underlying decisions about whether or not to fund a project,
how quickly the crowd decides to fund a project, how quickly funds are accumulating, variation in
contribution amounts, and how long funders remain engaged in fundraising (Figure 1).

Fig. 1. A comparison of kernel density estimates of crowd features on different crowdfunding platforms
shows similar distributions that describe the underlying behaviour of funders on each platform.

We further empirically test the degree of multimodality of the crowd feature distributions using
Hartigan’s Dip Statistic (HDS) [37] and observe that crowd appeal, momentum, and engagement
follow uni-modal distributions (Dip test: 𝑝 = 1.0). The crowd’s latency follows a bi-modal distri-
bution (Dip test: 𝑝 < 0.05) whereby some projects receive a substantial number of contributions
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early, while other projects take much longer to secure those initial contributions. The shapes of the
bi-modal distributions also resemble the “bathtub” effect (named after its shape), which is most
notable on the lending platform. This effect has been observed in simulation studies of funders’
donations over time on the Donors Choose platform [61]. The “bathtub” effect in crowd latency
arises when projects either quickly receive funds immediately after being posted or go through an
initial period of few to no contributions due to lack of crowd appeal or funders choosing to observe
other people’s contributions before making their own.

5.1 Crowd Features are Correlated with Fundraising Success
On all platforms, statistical comparisons between the mean values of crowd features for funded and
failed projects show that successful projects have greater appeal, higher momentum of contribution
activity, and greater variation in contribution amounts compared to failed projects (Table 2). Thus
the crowd’s appeal, momentum, and variation in contribution amounts are significantly positively
correlated with fundraising success on all crowdfunding platforms. These findings support previous
qualitative and quantitative findings that demonstrated the role of the number of contributors and
frequency in contributions on fundraising success [9, 16, 22, 31]. Our results also lend empirical
evidence to qualitative studies as they show that the higher the variation in contribution amounts,
hence less herding in funders’ contributions, the more likely a project is to reach its fundraising
goal [10, 50]. Based on these findings, we therefore anticipate that for crowdfunded projects to
be successful, they need to appeal to all sorts of funders, big and small, whose contributions
complement each other to meet the fundraising goal.

Table 2. Mean (std) values of crowd features by project category and funding outcome, as well as Pearson
correlation (𝑟 ) between crowd features and fundraising success. Accordingly, crowd feature values are sta-
tistically significantly different for funded and failed projects. The only exception is latency on the charity
platform. Notation: * significant at 𝑝 < 0.05; ** significant at 𝑝 < 0.01; *** significant at 𝑝 < 0.001.

Lending Equity Charity
Funded
20.2%

Failed
79.8% 𝑟

Funded
35.3%

Failed
64.7% 𝑟

Funded
99.4%

Failed
0.6% 𝑟

Appeal 67.544 (62.957) 6.754 (16.924) 0.605*** 175.789 (174.561) 31.399 (43.619) 0.534*** 3.951 (3.953) 2.204 (1.976) 0.038***
Momentum 1.906 (0.784) 0.759 (0.664) 0.599*** 1.422 (0.534) 0.881 (0.360) 0.518*** 1.025 (0.595) 0.636 (0.544) 0.040***
Variation 0.946 (.0588) 0.242 (0.377) 0.551*** 3.511 (2.042) 1.819 (1.427) 0.436*** 0.517 (0.495) 0.303 (0.425) 0.033***
Latency 0.135 (0.256) 0.539 (0.413) -0.388*** 0.208 (0.310) 0.332 (0.323) -0.184*** 0.616 (0.236) 0.605 (0.233) 0.004
Engagement 5.762 (3.020) 7.350 (1.833) -0.287*** 57.180 (37.646) 49.871 (31.170) 0.104** 33.352 (44.093) 83.833 (60.817) -0.088***

We further anticipate that funders are more likely to contribute to projects with notable initial
contributions compared to projects with little to no initial contributions. This hypothesis is based
on previous research that shows that while projects with a moderate-sized initial contribution
slightly outperform projects with no contribution, small initial contributions significantly decrease
the chances of success for a project [45]. On the lending and equity platforms, we observe that
the shorter the crowd latency (i.e. first funders respond quickly to a posted project) the more
likely a project will reach its fundraising goal, hence significant negative correlations. This finding
supports previous qualitative studies that highlight the importance of early donations in making the
fundraising goal easier to achieve by reducing the remaining funds needed, while at the same time
signalling project quality and funders’ buy-in and decisiveness on a project’s merits [24, 51, 55, 61].
We observe no significant correlation between crowd latency and fundraising success on the
equity platform. Finally, we observe that crowd engagement is significantly negatively correlated
with fundraising success in the lending and charity platforms meaning that successful campaigns
typically take less time to be fully funded compared to those that are unlikely to succeed. In
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contrast to relatively small contributions on lending and charity platforms, we anticipate that
equity campaigns targeting large contributions require significantly more fundraising time and
effort to reach full funding. Our expectations are confirmed and projects do need more engagement
to reach the investment goal on the equity platform.

5.2 Crowd Features Predict Fundraising Success Better than Project Features
We further combined the crowd features with project features provided by each platform to train
and evaluate the performance of Random Forest classifiers on predicting fundraising success. Table 3
shows the Random Forest model’s accuracy, precision, recall, F-Score, and area under the receiver
operating characteristic curve (AUC). On all platforms, the results of the evaluation metrics are
strongly correlated. In particular, we achieve accuracy and AUC scores above 0.7.

Table 3. Random Forest prediction accuracy is similar across multiple evaluation metrics. Shown here are
the mean 5-fold cross-validation results (all 𝑠𝑡𝑑 ≤ 0.015) using 100 estimators over 10,000 iterations and a
random under-sampling of the majority class in each iteration.

Category Accuracy Precision Recall F-Score AUC
Lending 0.989 0.988 0.990 0.989 0.989
Equity 0.882 0.886 0.876 0.881 0.882
Charity 0.691 0.720 0.626 0.670 0.691

Fig. 2. Random Forest permutation importance (piRF) ranking for project and crowd dynamics features.
Crowd dynamics features (shown in italics) account for at least 75% of the predictive feature importance on
all platforms.

Most importantly, we observe across classifiers built for the different platforms that crowd
features have relatively higher Random Forest permutation importance (piRF) scores computed on
hold-out test sets during cross-validation compared to project features visible to investors, lenders,
and donors, respectively. As Figure 2 shows, the five crowd features are in the top 7 on the lending
platform and top 8 on the equity platform. On the charity platform they occupy the top 4 positions,
with latency coming after the project features. Given the simplicity of the latency measure (time
difference between first contribution and project posting), unsurprisingly it is the worst-ranked
crowd feature across all platforms. Additionally, when grouped together, crowd features account for
57.2% of the lending, 83.9% of the equity, and 66.9% of the charity features’ permutation importance
(Figure 3). These findings suggest that the dynamics of crowd behaviour add significant value
toward predicting fundraising success in crowdfunding, beyond that of traditional project features
and further suggest that features deduced from crowd behaviour have huge potential benefits for
project creators and crowdfunding platforms (see Section 6). However, since project features are
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Fig. 3. A comparison of the grouped Random Forest permutation importance (piRF) between crowd and
project features on all three platforms shows that crowd features are superior to project features in predicting
fundraising success.

visible to funders and influence their contribution behaviour, we employed a CEM approach to
investigate the causal effects of crowd features irrespective of funders’ observations of specific
project features.

5.3 Crowd Features Have Significant Causal Effects towards Fundraising Outcomes
To perform CEM, we began by matching funded projects to failed projects with the exact same
coarsened project features as explained in Section 4.2. We matched 7, 150 of 29, 013 funded projects
in the lending platform (𝐿1 = 0.740), 198 of 261 funded projects in the equity platform (𝐿1 = 0.485),
and 1, 249 of 214, 531 funded projects in the charity platform (𝐿1 = 0.792). It is important to highlight
that the resulting decrease in the sample sizes of the matched samples is an artefact of matching
among only those funded projects for which well matching failed projects exist. From the matched
data, we then computed the sample average treatment effect of crowd features on fundraising
success. Since the SATT is based on potential outcomes, we interpret the unit-level causal effects
in terms of how statistically different they are from zero (no effect) at the 5% level.
We observed that crowd appeal, momentum, and variation of contributions are significant

treatment effects of funding success on all three platforms (Figure 4). Our results show that among
projects with similar covariates, some projects may fail to meet their fundraising goal due to low
crowd appeal, low momentum, and low variation as well as prolonged latency and engagement.
Hence the sooner a project receives funding and the quicker the contributions gain momentum, the
more likely the project will be successfully funded independent of its merits. While engagement
had a significant effect on fundraising success only on lending and charity platforms, latency had a
significant effect on fundraising success only on lending and equity platforms. The treatment effects
for both crowd engagement and latency were both negative indicating that the more prolonged
the crowd effects, the less chances of project success. These quasi-causal effects further confirm
our prior central tendency and correlation results (cf. Table 2) and feature importance results from
the Random Forest classifier (cf. Figure 2). Finally, the CEM results further reinforce our Random
Forest finding that there are differences in the strength of individual crowd features’ association
with project outcome. Once again, we find that high appeal, momentum, and variation are robust
predictors of fundraising success thereby providing empirical evidence for crowd features that are
important indicators of fundraising success across different platforms, while also being robust to
the particularities of different online markets.
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Fig. 4. Coarsened Exact Matching (CEM) sample average treatment effect on the treated (SATT) results for
the effect of crowd features on fundraising success at 95% confidence intervals. The SATT estimate is only
statistically significant when the 95% confidence interval (horizontal line) for each crowd feature does not
overlap the dotted vertical line at 0, representing no effect.

6 DISCUSSION
Our work presents a general approach to predicting fundraising success that focuses on the
behaviour of the funders rather than the characteristics of project creators or their projects. The
presented approach is based on the simple intuition that the timing and amount of funders’
contributions have an effect on fundraising outcome. We therefore provide a systematic analysis
for investigating the relationship between the funding crowd’s behaviour, as measured using five
crowd features, and fundraising success. Through a combination of correlation-based, supervised
learning, and quasi-causal inference methods, we demonstrate that our findings regarding the
importance of crowd dynamics features in fundraising success are not only stable across different
crowdfunding settings, but they are also consistent across three conventional empirical approaches.
Specifically, we find evidence for the collective nature of success as crowd features are significantly
correlated with fundraising success, approximate fundraising success better than the characteristics
of projects or their creators, and have significant causal effects towards fundraising outcomes. In
the following sections, we elaborate on these findings and their implications.

6.1 Robustness of Crowd Features to The Evolving Nature of Crowdfunding Platforms
Consistent across three conventional empirical methods, our findings show that the crowd features
are robust to the particularities of different crowdfunding platforms and markets, and impartial to
platform design and policy changes. This is especially important in studies of crowdfunding due
to the evolving nature of both the crowdfunding platforms and markets that make it difficult to
consistently investigate the effects of project covariates on fundraising success due to ad-hoc design
and policy changes. For example, on the DonorsChoose website, several longitudinal platform
changes to location filtering (2004), recommendation (2012), and search (2015) can be expected to
influence findings on the effects of both funders’ behaviour and project characteristics, such as
school location, subject area, and resource type on fundraising success. Specifically, changes in users’
ability to filter projects by poverty level (2005), ranking most urgent projects high as the default
setting for search (2008), and refining the most urgent criteria to meet both the highest poverty and
closest to completion criteria (2012) have been observed in prior literature to increase the effects of
project location and community type on fundraising success [17]. In another example, since its
SEC registration in 2009, Prosper no longer provides credit grade and other credit information to

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 115. Publication date: April 2021.



A Multi-Platform Study of Crowd Signals Associated with Successful Online Fundraising 115:15

its prospective lenders. Credit score, for example, was replaced by the Prosper score which is a
custom risk score built using historical in-house data based on Prosper users. Additionally, since
2009, new borrowers to the platform were required to have a FICO score of at least 640, while
returning borrowers only needed a score of 600 to request a loan.
The platform changes identified above affect the type of information presented to funders, the

kinds of projects funders are most likely to see, as well as funders’ contribution activity. Such
platform design and policy changes can be confounding not only when estimating the effect of
project features but also when evaluating the impact of crowd behaviour on fundraising success.
On the one hand, studies that solely focus on project determinants of fundraising success, i.e. most
existing literature on crowdfunding, risk overestimating their findings. For example, platform design
features that enable users to filter and search projects by location may increase the importance
of projects’ location in determining fundraising success compared to platforms that do not afford
location search and filtering [17]. On the other hand, studies that focus on crowd-based indicators
of fundraising success without controlling for confounding project-level variables risk under-
estimating the impact of changes in platform design on crowd behaviour. This is because despite
the impact that location search and filtering features, for example, may have on the importance
of projects’ location in determining fundraising success, these same platform design features
may inadvertently impact the crowd appeal of projects of similar quality but different geographic
locations. These challenges therefore require controlled approaches to systematically investigate
the effects of both project and crowd features on fundraising success. Our work contributes a
framework for studying evolving crowdfunding platforms and has implications beyond the study
of crowdfunding as well.

6.2 Main Findings & Design Contributions
Through a multi-platform study that aims to improve our understanding of the determinants of
fundraising success in different online capital markets, our work engages with ongoing CSCW
research on crowdfunding. Specifically, it provides generalisable support for existing empirical and
qualitative findings on the role of early contributions [22, 61] and presents a suitable approach for
controlling for the effects of platform architecture and design changes [17]. Through this approach,
we demonstrate the crucial role of three crowd features in determining fundraising success: the
crowd appeal, momentum of contributions, and variation in contribution amounts. Prior qualitative
work has long emphasised the importance of mobilising a community in crowdfunding, for example
by personally reaching out to potential contributors to increase appeal, having an early stage
publicity plan to generate fundraising momentum, as well as multiple funding levels (e.g. targeted
at big and small funders) to increase the variation in contribution amounts [40]. Therefore, not only
do we lend empirical evidence to the efficacy of mobilising fundraising communities, but we further
demonstrate computational approaches for measuring funders’ behaviour in terms of the key
drivers of fundraising success that characterise different fundraising efforts (i.e. appeal, momentum,
and variation). Additionally, these findings support previous qualitative studies that point towards
a self–reinforcing pattern whereby early contributions accelerate crowd appeal and momentum
through the internal social capital that project creators may develop in the crowdfunding community
which in turn provides crucial assistance in igniting a self–reinforcing mechanism that ultimately
leads to fundraising success [22]. Our results further help clarify contradictory findings about
the effect of project duration on fundraising success. For instance, our CEM analysis shows that
the crowd engagement which corresponds to a project’s duration has negative effect on charity
and lending platforms. As such, they support the argument that extended activity (i.e. a longer
project duration) in crowdfunding settings that rely on small individual contributions may signal
the crowd’s indecisiveness regarding a project’s merits [24, 51, 55]. At the same time, the positive
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effect of crowd engagement on fundraising success in the equity platform suggests that when it
comes to large capital investments that require significantly more fundraising time and effort (e.g.
through due diligence requiring potentially face-to-face interactions in response to higher levels of
risk [1]), longer campaign duration may help to increase the likelihood of project success as the
contributions reach the requested amount [23].
Our findings have important implications for crowdfunding platform design. Having demon-

strated that crowd dynamics have significant association with fundraising outcomes, we believe that
the choice architectures of the platforms that mediate crowd behaviour may influence fundraising
outcomes. We hope that platform designers can build upon these new and consequential obser-
vations to design platforms that harness crowd dynamics in ways that lead to more efficient and
successful fundraising. Additionally, our findings are intended to challenge platform designers to
reflect and think more critically about the ways in which their choices enable or inhibit the crowd
dynamics that lead to successful fundraising. For instance, how can crowdfunding platforms better
signal a project’s merit and appeal in such a way that affords funders the ability to quickly and
intelligently decide what projects to fund thereby increasing the project’s momentum and chances
of success?
We hope that our findings will inspire platform designers to think more broadly about how to

create crowdfunding platforms that both promote and support crowd awareness, navigation, and
coordination, and are attuned to the potential biases and inequalities that may result from inefficient
crowd decision-making [66]. Our findings also have implications for funders that contribute to
these platforms as we show that even for projects of comparable quality, sometimes the difference
between funded and not funded is the difference in the funders’ behaviour, e.g. whether they find a
project appealing, the timing of their contribution, and variation in the amount of their contribution
compared to previous contributions. Together, these platform-design and user implications suggest
that crowd-aware system design approaches could enhance social navigation and may help to
better coordinate crowd behaviour in platform-mediated decision-making environments.

7 CONCLUSION
In this study, we showed that universal features deduced from crowd activity are predictive of
fundraising success in different crowdfunding platforms and markets, thereby providing empirical
insights on the emergence of collective dynamics that ultimately determine what is worthy of
success. Our multi-method analysis has shown that crowd features are correlated with fundraising
success, predict fundraising success better than project features, and have a significant effect on
fundraising success independent of project features. These results advance a general approach to
approximating fundraising success in online capital markets that is robust to platform heterogeneity.
Such a universal approach is vital considering the evolving nature of crowdfunding platforms both in
terms of their user policies and interface design. To better understand how crowdfunding platforms
can be designed to promote efficient crowd decision-making, future research should investigate
whether the identified crowd features lead to sub-optimal fundraising outcomes, inefficiencies
in capital allocation, or re-enforce existing biases that may exacerbate inequalities. Ultimately, a
more nuanced understanding of how crowd behaviour influences fundraising outcomes will inform
how crowdfunding and online campaign sites, in general, can be designed to promote the crowd
dynamics that lead to successful fundraising to achieve maximal impact.
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