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ABSTRACT
Most of the data generated today is unstructured which typically
consists of text information. Understanding such text data is im-
perative given that it is rich in information and can be used widely
across various applications. However, the key to understanding
such data is its representation. In this survey, we discuss various
text representation methods starting from count based methods
to state of the art methods including distributed representational
learning. �ese algorithms can transform large volumes of text into
e�ective vector representations capturing the same semantic infor-
mation. Further, such representations can be utilized by various
machine learning algorithms.

1 INTRODUCTION
Data is growing at an exponential rate, where unstructured data
is growing signi�cantly faster than structured data. Unstructured
data is typically text heavy. Text based data is prevalent in var-
ied domains whether it be social media with users sharing their
opinions [64] or articles published by media companies or clinical
notes for patients in the hospital and online reviews given by users
expressing their preferences to some businesses.

Text data being rich in information gives us a unique opportu-
nity to derive valuable insights which might not be comprehensible
from quantitative data [15, 129]. Consequently, the main objective
of various natural language processing (NLP) algorithms is to ob-
tain human-like understanding of text [80]. For example, many
researchers aim to mine the opinion of users about a restaurant from
their online reviews or predict public sentiment from social media
about a political event. Over the years text has been used in various
applications such as email �ltering [25, 31, 137], document orga-
nization [13, 54, 65, 81, 120, 121, 142], sentiment prediction [103],
opinion mining [103, 133], polarization detection [29, 123], topic
inference [19, 90], text summarizing [12, 49, 88], anomaly detec-
tion [15], language translation, question answering [53], content
mining [2] and many more.

However, being unstructured content it adds complexity to model,
decipher automatically or use in conjunction with traditional fea-
tures for a machine learning framework [57]. Moreover, even
though large of volumes of text information is widely available
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and can be leveraged for interesting applications, it is rife with
problems [2]. Like most data, it su�ers from traditional problems
such as class imbalance and lack of class labels, but in addition there
are some inherent issues with text information. Apart from being
unstructured, text mining and representation learning becomes
more challenging due to the following discussed factors [129]:

• Noise: Text can be very noisy with various spelling mis-
takes, colloquialisms, slang words and emoticons. �is
a�ects the quality and reliability of the data.

• Ambiguity: Language in general can be ambiguous with
same word or sentence having multiple meanings. Addi-
tionally, sarcasm is commonly observed in human gen-
erated data on social media. Even though it is easy for
humans to infer the meaning, it is still a challenging task
to be done automatically.

• Semantic Structure: �e order and placement of words
can drastically change the meaning. For example, the pres-
ence of ’not’ can negate the meaning of a sentence.

• Domain Knowledge: Domain knowledge is critical for
some text. In order to interpret the meaning of the sentence
is it crucial to have an understanding of the domain and
be familiar with the domain jargon.

• Multilingual: Usage of multiple languages in the same
piece of information. Additionally most models are de-
signed for English language and therefore are not general-
izable to other languages.

A lot of research has been dedicated to address each of these con-
cerns individually [38, 44, 126]. However, in this survey we focus
on how text can be represented as numeric/continuous vectors for
easier representation, understanding and applicability to traditional
machine learning frameworks. Text can be seen as a collection of
entities such as documents, sentences, words or characters and
most algorithms leverage the implicit relationship between these
entities to infer them as vectors.

Over the years, many methods and algorithms have been used to
infer vectors from text be at character, word, sentence or document
level. All the methods are aimed at be�er quantifying the richness
in the information and making them more suitable for machine
learning frameworks such as to perform clustering, dimensionality
reduction or text classi�cation. In this survey, we study how text
representation methods have evolved from manually selecting the



features called feature engineering to more state of the art repre-
sentational learning methods which leverage neural networks to
discover relevant embeddings.
Contribution and Organization In this paper, we present a com-
prehensive study of various text representation methods starting
from bag of words approach to more state of the art representa-
tional learning methods. We describe various commonly used text
representation methods and their variations and discuss various
text mining applications they have been used in. We conclude with
a discussion about the future of text representation based on our
�ndings. We would like to note that this paper, strictly focuses
on representation of text for machine learning frameworks and
therefore uses content, data and text interchangeably.

2 FEATURE ENGINEERING
In this section, we discuss various popularly used feature engineer-
ing models such as bag of words, semantic representation and latent
semantic analysis. Most methods rely on count based methods and
involve manual e�ort to derive meaninful representations.

2.1 Bag of Words Model
�e Bag of Words (BOW) or unigram model is one of the most pop-
ular methods for representing text. �e model treats words as inde-
pendent features. Each sentence in a BOW model is therefore rep-
resented as a multiset of its words. Using the BOW model, text doc-
uments can therefore be represented through a high-dimensional
sparse vector whereby the term frequency of each feature repre-
sents each dimension. Although the multiplicity of words (word-
frequency) is retained, word order, context, and grammar are lost.
One common application of the BOW is to generate document term
frequency features to train a classi�er for document classi�cation
in information retrieval systems.

A natural extension of the BOW model is Term Frequency - In-
verse Document Frequency (TF-IDF) where the term frequencies
of each feature vector are discounted by the inverse document fre-
quencies to down-weight terms common terms and identify terms
that are discriminative for documents in the corpus. To preserve
word order and context, the BOW model can be extended to an
n-gram language model where n represents a set of consecutive
words extracted from a sentence as a feature vector. In this case, the
BOW language model is conceptually a special case of the n-gram
language model where n = 1, hence a unigram model.

Traditional BOW representations have several limitations. For
example, BOW vector representations are o�en high-dimensional
and very sparse. Although increasing the order of n-grams can
help in dimensionality reduction and improve prediction accuracy,
it further exacerbates data sparsity. �e BOW model also ignores
word semantics and fails to capture synonymy, polysemy, and word
context. For example a sentiment classi�er would have to be ex-
posed to a very large set of labelled data to learn that similar words
are predictive towards similar sentiment. However, extensions of
the BOW model using Latent Semantic Index (LSI), discussed later
in this paper, a�empt to overcome problems of word order and
context by applying Singular Value Decomposition (SVD) to the
BOW / TF-IDF features to �nd a latent semantic space that captures
word synonym in the corpus. To overcome sparsity, Chen et al [27]

proposed a Dense Cohort of Terms (dCOT) unsupervised algorithm
that maps high-dimensional sparse BOW into low-dimensional
dense representations providing a closed-form transformation of
the original sparse BOW features that is extremely fast to train and
apply. �eir model shows that dCOT features signi�cantly improve
classi�cation accuracy in document classi�cation tasks. Below, we
discuss some applications of the n-gram model.

Several n-gram techniques have been used for spelling error cor-
rection and detection [6, 32, 34, 55, 97, 102, 113, 135]. Zamora et al
[146] used a trigram analysis for spelling error detection. �e goal
of their study was to determine the utility of trigram analysis in
automatically detecting and correcting mispellings. Using a dataset
of 50, 000 misspelt words from six di�erent datasets, the authors’
trigram analysis technique was able to accurately identify the er-
ror site within a misspelling. However, their technique could not
distinguish between di�erent error types (e.g. material, positional,
and ordinal similarity) or between valid words and misspellings.
While limiting their study to material similarity, the extent to which
pairs of strings contain identical characters, Angell et al [8] used a
tri-gram similarity measure to automate spelling correction. Using
a dictionary of 64, 636 words and a collection of 1, 544 misspelt
words, the authors developed a nearest neighbour search model
to replace a misspelt word by a word in the dictionary which best
matches the misspelling. �e degree of match was calculated using
a similarity coe�cient based on the number of trigrams common
to the two words. �eir model correctly identi�ed over 75% of the
mispellings if the correct form of the word was contained in the
dictionary.

Brants et al [22] used an n-gram language model trained on unla-
belled monolingual text, for machine translation. In their proposed
distributed infrastructure, the authors train an n-gram language
model using 2 trillion tokens or terms resulting in a language model
comprising 300 billion n-grams used for machine translation. �eir
n-gram model achieved a competitive Bilingual Evaluation Under-
study (BLEU) score of 0.4535 on the Arabic - English NIST subset
in the 2006 NIST machine translations evaluation. �e BLEU score
measures the quality of text which has been machine-translated
from one natural language to another on a 0 - 1 scale. Although
their evaluation system used a mixture of 5, 6, and 7 n-grams, the
infrastructure is capable of scaling to larger amounts of training
data and higher n-gram orders. Other n-gram applications include
text searching [98], text retrieval [79], text �ltering [26], dictionary
lookup pa�ern searching in large dictionaries [104].

2.2 Semantic Representation
Most researches use bag of words model, however Sco� et al.[119]
presented their research to examine how text can be represented us-
ing syntactic and semantic relationships between words from text.
Various representations were evaluated based on the performance
of a rule based learner – RIPPER [119]. �e alternative representa-
tions were proposed to alleviate problems associated with bag of
words models as they broke word and sentence order and syntactic
structure, semantic relationships can be missing and context can
be agnostic. �ey discussed phrase based representations which
utilized nouns, since words alone were not always represent atomic
meanings. On the other hand, phrases, especially noun phrases,
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carried meaning full semantic information. For example, the word
“Machine” and “Learning” each can represent distinct meaning, but
the phrase “Machine Learning” expresses a very speci�c meaning
related to Arti�cial Intelligence. Due to the redundancy, high dimen-
sionality and non-uniformly distribution and noise of phrase based
representation, Sco� et al. [118, 119] proposed two algorithms for
the noun phrase extraction, namely Noun Phrase Extractor (NoPE),
which employed a part-of-speech tag assignment algorithm and a
noun phrase grouping algorithm. [119] examined some alternative
ways to represent text based on syntactic and semantic relationships
between words, WordNet[95] was used to extract the hypernym
and synonym information due to its hierarchical property.

Another notable method to represent text is to group words se-
mantically related to each other. Brown[23] clustering is a form of
hierarchical clustering of words based on the semantic relatedness
given a similar context. �e words sequence of a input text are ini-
tially clustered as individual clusters, then these clusters are merged
according to a quality maximum-likelihood estimate process. �e
quality is de�ned as the logarithm of joint probability of the input
words in the context of class-based bigram language model[82].
For each word, the probability is de�ned as the multiplication of
the probability of the word given its cluster and the probability
of the word’s cluster given the previous word’s cluster[82]. Even
though Brown clustering have been very sucessful in several NLP
applications, it fails to consider the word usage in a wider context
due to the nature of relying only on the bigram statistics[134].

WordNet[94, 95] is an on-line lexical reference system, which
organizes English nouns, verbs and adjectives into synonym sets.
WordNet is used as center resource for various semantic relatedness
representation methods[24]. �e co-occurance information of the
raw text is used to measure the semantic relatedness by combining
the structure and content of WordNet[106].

2.3 Latent Semantic Analysis
Latent Semantic Analysis (LSA) or Latent Semantic Indexing (LSI)
is a technique in natural language processing, which is primarily
utilized to describe the semantic content in contextual data through
exploring the structure in word usage across documents. To this
end, a sparse and high-dimensional term-document matrix M is
built whose rows and columns correspond to words and documents
respectively, each entry represents the occurrences of the term in
current document. Singular Vector Decomposition (SVD) technique
is applied on such matrix [42, 75] in order to get a low-rank (say
rank = k) approximation to matrix. �us, each row and column is
mapped in the form of vectors to a k-rank LSI space that is de�ned
by k largest eigenvectors of MMT [89]. Cosine similarities can
be used to compute similarities between words vectors. Another
advantage of mapping term vector on lower dimensional space is it
partially alleviates the inability of vector space model to identify
synonymy and polysemy. Because some components of polysemy
words can be preserved and the dimensions associated with similar
meaning terms are merged as well.

LSA has been integrated into and provides elegant solutions for
numerous applications across text classi�cation, data mining and
information retrieval. For instance, [145] utilized LSA to reduce

noise during the training stage. So�ware engineering recasted con-
cept location problem by treating source code as text and so�ware
elements as terms and used LSA to index so�ware elements to pro-
vide e�cient search [108]. [147] performed SVD on an expanded
term-document matrix that includes both training data and back-
ground text to classify text. [36] proposed to used LSA to represent
queries and documents in a latent semantic space to solve high
dimension data problem in information retrieval.

Even LSA achieves great success across a broad range of tasks,
however, potential limitations still exist. First of all, LSA exhibits its
inability in capturing propositional meaning as it is blind to word
order. Also LSA representations are unable to understand higher-
order word combinations such as phrases, clauses and sentences.
Secondly, LSA cannot completely capture synonumy and polysemy.
Because a certain word will be thought as carrying the identical
meaning if it occurs same number of times in a document.

3 FEATURE ENGINEERING V/S LEARNING
Extracting feature representation is a crucial step in most machine
learning tasks. Choosing discriminating and informative features
usually would improve learning and increase interpretability. Tradi-
tional feature engineering methods usually heavily rely on domain
knowledge and show inability of extracting discriminative data
features. Even though domain knowledge can compensate the
weakness to some extent, however, it still requires extremely ex-
pensive human labor. Furthermore, it will weaken the applicability
of machine learning algorithms as the more domain knowledge
involved in the phase of feature learning, the more learning meth-
ods will be con�ned within a speci�c task. On the other hand, real
world raw data is usually complex, noisy and has various formats
such as images, videos, audios and texts, which poses tremendous
challenges to the conventional hand-cra�ed and domain-dependent
feature engineering methods. �ese challenges motivate people to
come up ways to design techniques that e�ciently learn features
automatically, less dependent on people, and guarantee feature
quality at the same time.

Representation learning, also known as feature learning, refers
to a set of techniques that use machine to learn feature represen-
tations that suit for and computationally convenient to machine
learning tasks. Representational learning is obviously di�erent
from hand-cra�ed feature engineering and can be categorized into
supervised, semi-supervised and unsupervised learning. Supervised
representation learning learns feature representations by labeled
data, representative methods such as supervised dictionary learn-
ing [87], which learns a dictionary of representative elements, that
is, features, by exploiting both input data structures and labels, such
that each data point can be represented as a weighted sum of the
features. Supervised multilayer neural networks is another com-
mon method to perform feature learning. �ey use hidden layers
to learn feature representations for input which are subsequently
used for learning tasks at the output layer. Not large volume of ref-
erences could be found that focusing on using supervised learning
algorithms to perform representation learning tasks, the reasons
can be explained as following, in the real world, the amount of
labeled data are relatively limited for people to access, acquiring
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data labels can be very labor-intensive and time-consuming. �ere-
fore the demands of exploring representation learning approaches
that can bene�t from unlabeled data has been gradually a�racting
more a�ention. Semi-supervised learning combines large set of
unlabeled data with, usually very smaller set of, labeled data to
gain be�er feature representations [11]. Its wide applications can
be found in the domain of text classi�cation. [101] explored the use
of generative models for semi-supervised learning in the text clas-
si�cation area. [4] proposed semi-supervised subspace clustering
algorithm to address a text classi�cation problem. [141]proposed a
semi-supervised representation learning approach in a cross-lingual
text classi�cation problem. Semi-supervised feature learning also
been widely utlized in other research areas. A. Grover el al. ap-
plied semi-supervised learning for scalable feature learning on net-
works [52]. [112] applied semi-supervised method to extract more
compact representations on top of bag of words representations
in a text recognition problem. [45] proposed a semi-supervised
multi-feature strategy to merge individual features from labeled
and unlabeled images. Unsupervised representation learning is to
learn features from unlabeled data. Another signi�cant character
for unsupervised methods is they tend to learn low-dimensional
features that captures dominant information of high-dimensional
features. Common approaches in this group such as K-means clus-
tering, principle component analysis (PCA), or deep/multilayer
architecture neural networks. [43] took advantage of speed and
scalability of the K-means approach and used it to extract image
representations based on calculating Euclidean distance from image
patch to learn centroids. Because K-means is extremely fast, no com-
plicated hyperparameters to tune beyond the model structure and
easy to implement, thus [28] applied K-means clustering to learn
centroids from unlabled input data and chose two distance-based
feature mappings given learned centroids to obtain feature repre-
sentations. PCA is another commonly used unsupervised feature
learning strategy, which is a linear feature learning approach with
solid linear algebra foundation that is o�en used for dimensionality
reduction of data. PCA produces k singular vectors corresponding
to k largest singular values of data matrix of n unlabeled input data
vectors, note k is much smaller than n, and these k singular vectors
are feature vectors learned from the input data. [128] used a sparse
PCA to select biomarkers. [30] proposed a hybrid technique based
on PCA and facial feature extraction for frontal face detection in
color images. �ere are several limitations for PCA, its assumption
regarding that the directions with large variance are of most signi�-
cance which might not be held in di�erent applications. In addition,
PCA only exploits �rst and second order of the original data, which
may not well characterize the data distribution. A new trend in
representation learning is to use deep architecture neural systems
to learn “deep features”. �ese multilayer neural network archi-
tecture are based on distributed representation [58] assumption
which was �rst proposed by Geo�rey Hinton in 1984. Distributed
representation is an extension of local representation which refers
to each neuron in the neural network merely o�ers a local represen-
tation to certain concept, while a distributed representation means
a many-to-many relationship between distinct types of representa-
tions. In distributed representation, each concept is represented by
multiple neurons, each of which, on the other hand, participates
in the representation of many concepts. In this paper we mainly

focus on representative representation learning approaches which
has gained much a�ention and achieved outstanding performance
in learning discriminative feature vectors for text.

4 PROBABILISTIC REPRESENTATIONAL
LEARNING

In section 3 we can observe neural network has become a very
popular method to learn representation vectors especially in semi-
supervised and unsupervised machine learning problems. Based
on this algorithm distributed representation learning can be imple-
mented to learn more accurate and abstract representations. On
the other hand, another commonly used method in representation
learning is based on building probabilistic models which will be
introduced in this section.

4.1 Probabilistic Latent Semantic Analysis
Probabilistic latent semantic analysis (PLSA) can be treated as a
representative method that stems from a statistical perspective of
LSA for modeling co-occurrence data arising in natural language
processing [37]. �e signi�cant di�erence from LSA, which relies
on linear algebra and performs SVD on term-document matrix to
derive low-dimensional representation for observed variables, is
PLSA is based on a mixture decomposition model derived from a
latent class model called the aspect model [61] that has sound statis-
tical foundation. Expectation Maximization (EM) algorithm is the
standard procedure used for ��ing the latent variable model [62].

It is meaningful to discuss advantages and shortcomings of PLSA
compared to LSA. T.Hofmann clari�es the relationship between
those two algorithms. It points out the crucial di�erence between
these two is the objective function, In LSA it is the Frobenius form,
yet PLSA replies on the likelihood function. PLSA is superior to LSA
on the modeling side because it has clear probabilistic meaning like
conditional independence and well-de�ned probability distribution.
Furthermore, directions in the LSA latent space cannot be inter-
preted directly, each direction in this PLSA latent space corresponds
to class-conditional word distributions de�ning a speci�c topical
context. In addition, PLSA applies probabilistic theory to �t and
select model and control the model complexity. On the contrary,
LSA can only choose dimension value on heuristics. However, LSA
performs be�er than PLSA regarding computational complexity,
because SVD can be computed exactly, while EM o�en su�ers from
the local maximum of likelihood function.

People have discovered advantages of PLSA and applied it on
multiple tasks. [21] took advantage of the feature that PLSA can pro-
vide a be�er representation for sparse information in a text block to
do topic-based document segmentation. [67] used PLSA to mining
the hideen semantic associations between users and web pages
based on co-occurrence pa�erns of pages in user sessions. [39] pro-
posed a hybrid model of mixing Nonnegative matrix factorization
(NMF) and PLSA to help PLSA jump out of the local optima. PLSA
also be performed by Hofmann [63] to learn a collaborative �ltering
model so as to capture user preferences.
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4.2 Topic Modeling
Probabilistic topic models are generative processes aimed at dis-
covering the hidden thematic structure of large collections of doc-
uments. �ey do not require class labels or annotations making
them unsupervised learning algorithms [17].

One of the simplest topic model was proposed by Blei et al. in
2003 called Latent Dirichlet Allocation (LDA) [19]. Using the words
of the documents as the observed variables they de�ne the hidden
topic structure characterized by three components: topics, distri-
bution of topics in a document and per-word per-document topic
assignments. Being a generative process, a joint probability distri-
bution is de�ned over both the observed and hidden variables and
the conditional probability (posterior) of observing the hidden over
the observed data is computed. �e model assumes that the order of
the words and documents is not important and the number of topics
are assumed to be known and �xed. However, even though each
document is projected on a �xed number of topics, each document
can exhibit di�erent proportions. �e topic distribution and poste-
rior are commonly used for dimensionality reduction, clustering,
summarizing, inference and classi�cation of text documents.

Over the years, numerous variations of LDA have been proposed
by either relaxing the constraints or for suiting the application
domain be�er by incorporating meta data (additional information
about the documents). As discussed before, traditional LDA does
not account for the order of the documents. However, some appli-
cations require studying the evolution of topics in a stream of docu-
ments [3, 47, 56, 68, 115, 151]. Blei el. al proposed a dynamic topic
model to discover evolving set of topics in sequentially organized
corpus of documents [18]. �e method uses a state space model
which divides the time into distinct periods. Wang et al. generalized
the topic evolution from discrete time windows to a continuous
space [138]. Another method to discover topics called Online Topic
Model (OLDA) was proposed by AlSumait et al. where the topic
model was incrementally updated with new set of documents [7].
Wallach et al. relaxed the constraint for word independence and
presented a topic model where each word was conditioned on the
previous word [136]. Similarly, Gri�ths et al. explored di�erent
dependencies amongst words based on syntactic and semantic use.
�eir model uses HMM for syntax and LDA for semantic to be�er
under the role of a word. �e model produced competitive results
for parts of speech and classi�cation [51]. Further, since topic pro-
portions are randomly drawn from the Dirichlet distribution, the
topic proportions are considered near independent, however real-
istically it is possible that topic proportions are correlated to each
other. For example, a machine learning research paper is more
likely to have topics on neural networks and representation learn-
ing rather than sports. In order to address this drawback, Blei et al.
proposed Correlated Topic Model (CTM) where topic proportions
were correlated according to the logistic normal distribution [16].
As discussed earlier, LDA assumes a �xed number of topics however
Teh et al. proposed the use of hierarchical Dirichlet process in order
to relax this constraint [131]. Ho�man et al. proposed yet another
extension for large document collections called online learning of
lda [60] which was based on online stochastic optimization and
estimated the topics much faster than traditional LDA.

In addition to the documents other a�ributes of the documents
might be available which usually is called the meta data. Examples
of meta data could be a response variable for a document, user tags
and author information. �e traditional LDA model is an unsuper-
vised method. However, supervised LDA (sLDA) can be used when
a response variable (categorical or continuous score) is available. It
models the documents and the response variables together by max-
imizing the joint likelihood of the data and response variable. �e
response is dependent on the empirical topic proportions found in
a document [90]. A variant of sLDA called medLDA learns the topic
distributions using a max-margin discriminative method [152, 153].
Along the same line, DiscLDA aims to �nd topic proportions in the
reduced dimension space conditioned on the response variable [73].
However, sLDA, medLDA, and DiscLDA only deal with one la-
bel associated with a document. Ramage et al. proposed Labeled
LDA to discover topics in multi-labeled documents [110]. Partially
LDA generalizes Labeled LDA by allowing multiple topics for one
label [111].

Further, there are variations of the model that have been en-
riched with external information and used for multiple applications.
We discuss few of the applications: Author-Topic Model aims at
modeling the topic distribution for the content and the authors
simultaneously [114]. Similarly, Topic-Link LDA models topics
in documents leveraging author connections and their in�uence
on each other [85]. Furthermore Wang et al., leveraged the latent
themes obtained by probabilistic topic models to recommend sci-
enti�c articles [139]. Titove et al. leveraged probabilistic topic
models such as LDA and PLSA to infer rateable aspects from online
user reviews by extracting �ne grained topics [132]. Ramage et al.
utilized Labeled LDA to summarize a user’s Twi�er stream [109].
In order to deal with short text used for social media sites such as
Twi�er, Nigam et al. developed a framework leveraging LDA to
infer topical interests of followers of a company [100]. Zhao et al.
contrasted Twi�er as an information source to New York Times by
using a topic model called Twi�er-LDA model [150].

5 DISTRIBUTED REPRESENTATIONAL
LEARNING

5.1 Character Level Neural Language Modeling
Even though word level Neural Lanugage Models (NLM) have been
outperformed count based n-gram models, it is agnostic to the sub
word information, such as morphemes, this can be problematic
for morphologically rich languages[69]. Sutskever et al. [127]
propose a new Multiplicative Recurrent Neural Network (RNN) to
model the character sequence by taking advantage of the advance
in Hessian-Free optimization. Graves et al.[50] use Long Short-
Term Memory (LSTM) RNN to model complex sequences, such as
character sequence.

Improvements have been reported for the part-of-speech tag-
ger task[41] and named entity recognition task[117] employing a
hybrid embedding scheme, which concatenates the word embed-
ding with the character level embedding. Zhang et al.[149] take
advantage of the deep Convolution Neural Networks (ConvNets)
to use character vocabulary as input to learn a complete charac-
ter level embedding for a text classi�cation task, the experiment
results show that the proposed model outperforms the pretrained
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word2vec[91, 92] embedding based LSTM architectures on several
evaluation data sets.

Ling et al.[84] use the one hot encoding of each character in the
word as bidirectional LSTM RNN’s input in forward and backward
directions to train a character level embedding, they apply a similar
architecture to the part-of-speech tagging task. Ballesteros et al.[10]
use a similar architecture to [84], a bidirectional LSTM RNN over
characters in both from le� to right and from right to le� directions
to train a transition-based parser, the proposed method obtains
improvements on many morphologically rich languages.

5.2 Word Embeddings
�ere has been a lot of work in the �eld of continuous vectors for
words as previously discussed through other models. Turian et al.
discussed various unsupervised methods to obtain word features
before utilizing them in supervised approaches [134]. However,
in this section, we focus on distributed representations of words
learned by neural networks and their applications. Distributed
word representations are called word embeddings [134].

Distributed representations have shown to outperform n-gram
models [91–93]. Word2vec model proposed by Mikolov et al. was
able to learn word vectors to capture syntactic and semantic sim-
ilarities. Additionally, the vectors enabled us to perform alge-
braic operations in the continuous space. One of the most com-
mon examples used to demonstrate the model’s e�ectiveness is
Kinд − Man +Woman = Queen. For e�cient computation, two
architectures were introduced: 1) Continuous bag of words model
(CBOW) which predicts the current word based on the context 2)
Continuous skip-gram model (SG) which maximizes classi�cation
of a word based on the context. Both the architectures leveraged
the probability distribution over the next word enabling them to
generalize be�er than traditional n-gram models [93]. Goldberg
et al. provided a detailed discussion of the negative sampling to
further understand word2vec model [48]. Representations from
skip gram model with negative sampling (word2vec implemen-
tation) have been applied to various tasks such as named entity
recognition [122], sentiment classi�cation [143, 148]. word2vec for
NER [122].

Mnih et al [96] presented a similar framework as Mikolov et
al. however used variants of log-bilinear model to obtain speedup.
Further, Pennington et al. argued that previous methods were
able to capture local relationships however did not incorporate
global relations. �erefore, they proposed GloVE which leveraged
global matrix factorization and local context window to infer word
representations [107]. �e model used global log-bilinear regression
models and has shown to perform well on many word similarity
and named entity recognition tasks.

More recently, researchers have started looking at leveraging ex-
isting semantic lexicons to improve the learnt word representations.
Bollegala et al. proposed a framework for joint word representation
using co-occurrence as seen in existing embedding models and en-
riching them with relational constraints as observed from semantic
lexicons. �ey reported high performance for word similarity on
comparison to other models that leverage semantic lexicons [20].
Additionally, researchers are also looking at having multiple em-
bedding for a given word [99].

Interestingly, Levy et al. compared four word representations:
PPMI matrix, SVD factorization, skip gram model with negative
sampling and Glove. According to their experiments, they found
that the success of word embeddings can be a�ributed to the system
design and hyper-parameters. On transferring this knowledge to
traditional methods, there did not �nd a signi�cant di�erence in
the performance [80].

5.3 Phrase and Sentence Embeddings
An inherent limitation of word embeddings is they are blind to
word order and inability to represent phrases. Learning vector rep-
resentations for phrase was hence developed motivated by word
embedding limitation. Some idiomatic phrases have a meaning that
cannot be regarded as the simple composition of individual word
meanings, for example, “Delta Airlines” is not a natural combination
of meaning of words “Delta” and “Airlines”. Extension from vector
representations for words to entire phrases makes the Skip-gram
model more expressive. To learn vector representation for phrases,
people �rst need to identify reasonable phrases from text by �nding
out words which are frequently occur together yet infrequently in
other contexts, and use token to represent a phrase in the training
data. Mikolov el. used unigram and bigram counts based methods
to form phrases [92]. Skip-gram model is trained in order to learn a
vector representations for individual phrases. Mikolov et al. found
the skip-gram model exhibits linear structure, based on which they
proposed an additive compositionality approach as well to gen-
erate phrase representations by meaningfully combine words by
element-wise addition of their vector representations. [130] treated
learning a Twi�er-speci�c sentiment classi�er as a phrase-level sen-
timent classi�cation task, and learned a sentiment-speci�c phrase
embedding (SSPE), which are used as features for classi�cation,
from a neural network trained from large-scale tweets. [125] in-
troduced a recursive neural network to learn continuous vector
representations for phrases without manual engineering in order
to capture full syntactic and semantic information and use them
as input to parser to improve parser quality. �ere are also some
works studying how to extend learning distributed representations
for words or phrases to sentences. [124] a�empted to learn sentence
vector representations for a parse natural language sentences task
by merging words representations into phrase representations in
an order given by a parse tree of a sentence. [77] proposed the
concept of “paragraph vector” which is capable of constructing
vector representations for variable length of input sequences rang-
ing from sentences, paragraphs to even documents. Kiros et al.
proposed the skip-thought model [70] which casted learning sen-
tence representation to train a encoder and decoder model, namely,
for consecutive sentences S1, S2 and S3, the skip-thought model
can predict (decode) context sentences S1 and S3 given (encode)
S2. Some applications replying on sentence representation leaning
can be found in recent years. [71] applied sentence embedding to
the problem of predicting labels for sentences given labels for re-
views. [35] utilized sentence vector representation on short-texts
analysis in order to grasp semantic meaning of such texts.
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5.4 Paragraph Embeddings
Two most common ways of representing paragraphs and documents
are through BOW and TF-IDF representations of terms contained in
the paragraphs or documents. Similar to word embeddings where
each term or word has an exact and unique meaning represented by
di�erent weights in each element of the word embedding, a para-
graph or document’s meaning in paragraph document embeddings
is represented by each element of its paragraph’s or document’s
embedding, respectively. Each paragraph or document embedding
is therefore represented by a combination of word embeddings
of its containing words. Similar to how word embeddings repre-
sent di�erent meanings of each word, paragraph and document
embeddings represent di�erent meanings of each paragraph and
document. Consequently, paragraph and document vectors close
to each other may therefore be of similar topics.

In their work on distributed representations of sentences and doc-
uments, [77] proposed Paragraph Vectors (PV) as an unsupervised
method for learning continuous distributed vector representations
of variable length texts ranging from sentences to documents. Two
PV models were proposed: a Distributed Bag of Words (PV-DBOW)
where sparse paragraph vectors are mapped into low-dimensional
dense vectors and a Distributed Memory (PV-DM) model where
the paragraph token acts as a memory token that remembers what
is missing from the current context or the paragraph topic. �e
paragraph vector representations are learned to predict the sur-
rounding words in the contexts sampled from the paragraph. In
their study, the authors use paragraph vectors to learn embeddings
of movie review texts that can be leveraged for sentiment analysis
and Information Retrieval (IR) achieving an error rate of 7.42%.
Compared to other approaches on the IMDB data set, their method
is the only approach that goes signi�cantly below the 10% error
rate.

However, [77]’s PV-DBOW model was not designed for IR be-
cause its learning objective excessively suppresses the importance
of frequent words, is prone to over-��ing short documents during
training iterations, and fails to model word-context associations
thereby making it di�cult to capture word substitution relation-
ships that are important in IR. Recently, [5] proposed three major
improvements over the original PV model to adapt it to IR tasks:
replacing the corpus frequency-based negative sampling strategy
with a document frequency-based strategy, regularizing document
representations to prevent over-��ing of short documents, and
introducing a joint learning objective over document-word and
word-context associations to enhance word probability estimation.
�e author’s study on how to e�ectively use the PV model in lan-
guage model frameworks to improve ad-hoc information retrieval
demonstrated that a PV model can outperform topic models on
language model estimation for IR.

Following [77]’s work, [33] considered tasks for PVs other than
sentiment analysis and information retrieval. In their work on doc-
ument embeddings with PVs, the authors compare PVs with other
baselines such as LDA on two tasks: �nding the nearest Wikipedia
articles an audience should browse, given an initial article and
�nding related articles on arXiv. �eir model jointly trains word
embeddings with paragraph vectors to improve the quality of the
paragraph vectors. �e results of their experiment showed that

paragraph vectors are superior to LDA for measuring semantic simi-
larity on Wikipedia articles and on par with LDA’s best performing
number of topics on �nding related arXiv articles. �e authors
further propose additional applications of paragraph vectors such
as local and non-local corpus navigation, data set exploration, book
recommendation, and reviewer allocation.

5.5 Document Emdeddings
In addition to paragraph embeddings, document-level representa-
tion is an essential pre-processing technique for reducing the com-
plexity of documents and making them easier to handle in machine
learning applications. �e goal of document-level representations
is to map documents into compact forms of their contents. �is can
be achieved by transforming the full text of each document into a
document vector of term weights or word frequencies from a set
of terms, also known as a dictionary, that occur at least once in a
minimum number of documents.

Each document is therefore represented by a vector, called doc-
ument embedding, calculated by the vector representation of its
containing words. Due to the huge size of unique terms from the
document corpus that can be contained in a dictionary, dimen-
sionality reduction is o�en performed to eliminate irrelevant and
redundant features that impact the performance of classi�cation al-
gorithms both in terms of running time and classi�cation accuracy.
Some common applications of document vector representations
include document retrieval[9, 144], clustering [72], and classi�ca-
tion [66, 72, 74, 144].

Similar to Earth Mover’s Distance, Kusner et al. [72] developed
a Word Mover’s Distance (WMD) function to measure dissimilarity
between two text documents as the minimum amount of distance
that the embedded words of one document need to ”travel” to
reach the embedded words of another document. Compared to
other document distance measures, the WMD is hyper-parameter
free, highly interpretable, and naturally incorporates knowledge
encoded in the word2vec space. �e WMD measure can be used to
calculate document similarity for document retrieval, clustering and
classi�cation tasks. Such similarities can also be used for ranking
and recommendation systems.

In information retrieval, [9] explore several document representa-
tion models for blog relevance ranking - the task of recommending
blogs to a user in response to a query. �e authors proposed two
document representation models for blogs in IR: a Large Document
(LD) model in which entire blogs are indexed as a single document
and a Small Document (SD) model where indexing is performed at
the blog post level and the �nal blog ranking is computed through
its aggregate posts rankings. �e experiments were conducted
using the TREC Blog06 collection, exclusively focusing on feeds
while ignoring permalinks and homepage documents. �e feed
documents were a combination of ATOM and RSS XML. Although
both the LD and SD models perform at comparable levels of preci-
sion and recall, the results of the experiments demonstrated that
the two models are complementary and combining the two models
provides superior results to either model in isolation.

Huang et al. [66] proposed a method to learn document em-
beddings with neural networks for text classi�cation tasks. �e
authors use a BOW representation of a document’s words to derive
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the document embeddings and compare the results of their neural
network architecture with simple BOW vector representations for
text classi�cation. Using two data sets for evaluation, the 4th Large
Scale Hierarchical Text Classi�cation Challenge (LSHTC) and So-
gou data sets, their results showed that document embeddings have
a higher classi�cation accuracy than BOW vectors.

Lai et al. [74] recently presented a framework for text classi�-
cation using a recurrent convolutional neural network. In their
framework, they incorporate the contextual information by de�ning
a le� and right context instead of using a window based approach.
�ey compared their framework against traditional methods such
as BOW and n-gram models. Further, the framework was bench-
marked against state of the art methods such as LDA and para2vec.
�eir framework performed be�er for 3 of the 4 datasets used
(20Newsgroup, Fudan, ACL Anthology Network and Stanford Sen-
timent Treebank).

In their research on learning document semantic representation
with Hybrid Deep Belief Network (HDBN), Yan et al. [144] pro-
pose a high-level abstraction semantic representation method for
document retrieval and classi�cation. �e authors proposed a new
HDBN which uses Deep Boltzman Machine (DBM) on the lower lay-
ers together with Deep Belief Network (DBN) on the upper layers.
Compared to other neural network architectures, the advantage
of DBM in their model is that it employs undirected connections
when training weight parameters which can be used to e�ectively
sample the states of the nodes on each layer.

6 FUTURE OF TEXT REPRESENTATION
In this survey, we have introduced various algorithms that enable
us to capture rich information in text data and represent them as
vectors for traditional machine learning frameworks. We �rstly
discussed traditional methods of text representation which mostly
involved feature engineering. �e models such as BOW or semantic
based were primarily count based. LSA took the representation
one step further where it performed dimensionality reduction on
a document-term matrix and subsequently computed latent fea-
tures. �e focus shi�ed from feature engineering to learning with
probabilistic models such as PLSA and LDA. �ese models did not
involve manual e�orts for feature engineering but rather intro-
duced unsupervised methods for obtaining a probabilistic thematic
representation. More recently, with the advent of high computation
power, neural networks are commonly used for learning represen-
tation of text at character, word, sentence, paragraph or document
level.

Deep learning techniques have been a�racting much a�ention
in these years which are well known especially for their capability
of addressing problems in computer vision and speech recogni-
tion areas. �e great success deep learning achieved stems from
its use multiple layers of nonlinear processing units for learning
multiple layers of feature representations of data, di�erent layers
correspond to di�erent abstraction levels. Yann LeCun et al. pro-
posed a tight connection between deep learning and representation
learning in [78], they considered deep learning methods as represen-
tation learning methods with multiple levels of representation, such
representations are usually automatically obtained by composing
non-linear modules that each transform the representation at one

level into a representation at a higher, slightly more abstract level.
Such multi-level architecture overcomes the weakness of utilizing
conventional feature learning strategies in representation learn-
ing, because layers of features in deep learning are not designed
by people mastering domain knowledge, they are directly learned
from raw data. As shown in the paper, there is a growing trend to
explore deeper models for previously popular shallow models. �e
deep models are achieving state of the art performance for various
machine learning tasks [46]. In this section we will brie�y discuss
some representative works by introducing deep learning methods
into text representation learning problems we discussed in previous
sections.

�e LSA strategy uses linear function for feature computation
and are unsupervised, so does PLSA given that PLSA alternatively
can be presented as a document-word matrix factorization approach
yet in a probabilistic way. �ose linear feature learning approaches
usually show weakness in learning semantic representations. As
Yoshua Bengio described in [14], the expressive power of linear
features is very limited. Linear features can barely be stacked to
form deeper, more abstract representations since the composition
of linear operations yields another linear operation. In recent years,
there are a number of literatures [40, 116, 140] had proposed e�-
cient methods applying deep learning techniques to design novel
representation learning methods that are exploited to expand the
conventional semantic indexing on text data, which achieved out-
standing results that outperform traditional methods dramatically.
Essentially, deep learning methods are formed by the composition
of multiple non-linear transformations that will generate more
compact and useful representations.

As previously discussed distributed representations have helped
address the problem of curse of dimensionality and increase gener-
alization. Salakhutdinov et al. [59] proposed Replicated So�max,
simple two-layer undirected topic model, to infer distributed repre-
sentation of documents. �ey showed that their model generalized
be�er than probabilistic topical models such as LDA. Inspired from
Replicated So�max, Larochelle et al. [76] proposed a neural network
topic model where they used neural autoregressive distribution
estimator as an alternative to RBMs. Gan et al. [46] proposed a
deep generative model for topic modelling combining traditional
Bayesian approach and sigmoid deep belief network.

Deep learning methods not only shows powerful capability
in semantic analysis applications on text data, but can be suc-
cessfully used in number of tasks of text classi�cation and nat-
ural language processing. Character level embedding methods
[69, 149] demonstrate success in modeling short text, such as tweets
and reviews, which can capture emotions or polarities expressed
by multiple punctuations and word variations. Representative
works [1, 83, 86, 105] by introducing deep neural network models
to learn phrase or sentence embeddings demonstrated satisfying
results.
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tronic Press, 239–243.

[123] Pawel Sobkowicz, Michael Kaschesky, and Guillaume Bouchard. 2012. Opinion
mining in social media: Modeling, simulating, and forecasting political opinions
in the web. Government Information �arterly 29, 4 (2012), 470–479.

[124] Richard Socher, Cli� C Lin, Chris Manning, and Andrew Y Ng. 2011. Parsing nat-
ural scenes and natural language with recursive neural networks. In Proceedings
of the 28th international conference on machine learning (ICML-11). 129–136.

[125] Richard Socher, Christopher D Manning, and Andrew Y Ng. 2010. Learning
continuous phrase representations and syntactic parsing with recursive neural
networks. In Proceedings of the NIPS-2010 Deep Learning and Unsupervised Feature
Learning Workshop. 1–9.

[126] L Venkata Subramaniam, Shourya Roy, Tanveer A Faruquie, and Sumit Negi.
2009. A survey of types of text noise and techniques to handle noisy text. In
Proceedings of �e �ird Workshop on Analytics for Noisy Unstructured Text Data.
ACM, 115–122.

[127] Ilya Sutskever, James Martens, and Geo�rey E Hinton. 2011. Generating text
with recurrent neural networks. In Proceedings of the 28th International Conference
on Machine Learning (ICML-11). 1017–1024.

[128] YH Taguchi and Yoshiki Murakami. 2013. Principal component analysis based
feature extraction approach to identify circulating microRNA biomarkers. PloS
one 8, 6 (2013), e66714.

[129] Ah-Hwee Tan and others. 1999. Text mining: �e state of the art and the
challenges. In Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery
from Advanced Databases, Vol. 8. 65–70.

[130] Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and Ting Liu. 2014. Building
Large-Scale Twi�er-Speci�c Sentiment Lexicon: A Representation Learning
Approach.. In COLING. 172–182.

[131] Yee Whye Teh, Michael I Jordan, Ma�hew J Beal, and David M Blei. 2004.
Sharing Clusters among Related Groups: Hierarchical Dirichlet Processes.. In
NIPS. 1385–1392.

[132] Ivan Titov and Ryan McDonald. 2008. Modeling online reviews with multi-grain
topic models. In Proceedings of the 17th international conference on World Wide
Web. ACM, 111–120.

[133] Ivan Titov and Ryan T McDonald. 2008. A Joint Model of Text and Aspect
Ratings for Sentiment Summarization.. In ACL, Vol. 8. Citeseer, 308–316.

[134] Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word representations: a
simple and general method for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for computational linguistics. Association
for Computational Linguistics, 384–394.

[135] Julian R. Ullmann. 1977. A binary n-gram technique for automatic correction
of substitution, deletion, insertion and reversal errors in words. Comput. J. 20, 2
(1977), 141–147.

[136] Hanna M Wallach. 2006. Topic modeling: beyond bag-of-words. In Proceedings
of the 23rd international conference on Machine learning. ACM, 977–984.

[137] Bin Wang and Wen-feng PAN. 2005. A survey of content-based anti-spam email
�ltering [j]. Journal of Chinese Information Processing 5, 000 (2005).

[138] Chong Wang, David Blei, and David Heckerman. 2012. Continuous time dy-
namic topic models. arXiv preprint arXiv:1206.3298 (2012).

[139] Chong Wang and David M Blei. 2011. Collaborative topic modeling for recom-
mending scienti�c articles. In Proceedings of the 17th ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 448–456.
[140] Hao Wu, Martin Renqiang Min, and Bing Bai. 2014. Deep Semantic Embedding..

In SMIR@ SIGIR. 46–52.
[141] Min Xiao and Yuhong Guo. 2013. Semi-Supervised Representation Learning

for Cross-Lingual Text Classi�cation.. In EMNLP. 1465–1475.
[142] Wei Xu, Xin Liu, and Yihong Gong. 2003. Document clustering based on non-

negative matrix factorization. In Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion retrieval. ACM,
267–273.

[143] Bai Xue, Chen Fu, and Zhan Shaobin. 2014. A study on sentiment computing
and classi�cation of sina weibo with word2vec. In Big Data (BigData Congress),
2014 IEEE International Congress on. IEEE, 358–363.

[144] Yan Yan, Xu-Cheng Yin, Sujian Li, Mingyuan Yang, and Hong-Wei Hao. 2015.
Learning document semantic representation with hybrid deep belief network.
Computational intelligence and neuroscience 2015 (2015), 28.

[145] Yiming Yang. 1995. Noise reduction in a statistical approach to text categoriza-
tion. In Proceedings of the 18th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, 256–263.

[146] EM Zamora, Joseph J Pollock, and Antonio Zamora. 1981. �e use of trigram
analysis for spelling error detection. Information Processing & Management 17, 6
(1981), 305–316.

[147] Sarah Zelikovitz and Haym Hirsh. 2001. Using LSI for text classi�cation in the
presence of background text. In Proceedings of the tenth international conference
on Information and knowledge management. ACM, 113–118.

[148] Dongwen Zhang, Hua Xu, Zengcai Su, and Yunfeng Xu. 2015. Chinese com-
ments sentiment classi�cation based on word2vec and SVM perf. Expert Systems
with Applications 42, 4 (2015), 1857–1863.

[149] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional
networks for text classi�cation. In Advances in neural information processing
systems. 649–657.

[150] Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing He, Ee-Peng Lim, Hongfei Yan,
and Xiaoming Li. 2011. Comparing twi�er and traditional media using topic
models. In European Conference on Information Retrieval. Springer, 338–349.

[151] Ding Zhou, Xiang Ji, Hongyuan Zha, and C Lee Giles. 2006. Topic evolution
and social interactions: how authors e�ect research. In Proceedings of the 15th
ACM international conference on Information and knowledge management. ACM,
248–257.

[152] Jun Zhu, Amr Ahmed, and Eric P Xing. 2009. MedLDA: maximum margin
supervised topic models for regression and classi�cation. In Proceedings of the
26th annual international conference on machine learning. ACM, 1257–1264.

[153] Jun Zhu, Amr Ahmed, and Eric P Xing. 2012. MedLDA: maximum margin
supervised topic models. Journal of Machine Learning Research 13, Aug (2012),
2237–2278.

11


	Abstract
	1 Introduction
	2 Feature Engineering
	2.1 Bag of Words Model
	2.2 Semantic Representation
	2.3 Latent Semantic Analysis

	3 Feature Engineering v/s Learning
	4 Probabilistic Representational Learning
	4.1 Probabilistic Latent Semantic Analysis
	4.2 Topic Modeling

	5 Distributed Representational Learning
	5.1 Character Level Neural Language Modeling
	5.2 Word Embeddings
	5.3 Phrase and Sentence Embeddings
	5.4 Paragraph Embeddings
	5.5 Document Emdeddings

	6 Future of text representation
	References

